Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36899790

ABSTRACT

The purpose of this experiment was to examine the effects of MFL supplementation on feed intake, nutrient digestibility, milk yield, and milk composition in early lactating dairy cows. Twelve, Thai crossbred Holstein Friesian cows in early lactation, 500 ± 30 kg of body weight (BW), were randomly assigned according to a completely randomized design (CRD). MFL supplementation levels of 0, 100, 200, and 300 mL/d were used as treatments. Experimental animals were fed a total mixed ration (TMR) with a roughage to concentrate ratio (R:C ratio) of 40:60, which contains 12% crude protein (CP) and 70% total digestible nutrient (TDN). Rice straw was a roughage source. MFL supplementation levels had no effect (p > 0.05) on body weight change and dry matter intake (DMI) expressed as %BW, whereas DMI expressed as metabolic body weight (BW0.75) was linearly (p < 0.05) increased, with the highest at 200 mL/d in the YFL supplementation group (147.5 g/kg BW0.75), whereas feed intake of organic matter (OM), CP, ether extract (EE), neutral detergent fiber (NDF) and acid detergent fiber (ADF) did not significant (p > 0.05) difference among treatments. Related to apparent digestibility, MFL levels did not affect (p > 0.05) on DM, OM, and EE digestibility, while apparent digestibility of CP, NDF, and ADF were linearly increased (p < 0.05) when increasing MFL supplementation levels, and the highest (p < 0.05) were the 200 and 300 mL/d FML supplemented groups. BUN at 0 h post feeding did not show a significant difference (p > 0.05) between treatments, while at 4 h after feeding, BUN was linearly (p < 0.05) increased from 0, 100, 200, and 300 (mL/day) MFL supplementation, the values were 12.9, 13.1, 19.7, and 18.4 mg/dL, respectively and the highest was 200 mL/head/day for the MFL supplemented group. MFL supplementation did not affect (p > 0.05) milk fat, lactose, solid not fat (SNF), and specific gravity of milk, while MFL supplementation at 200 mL/day caused a linear increase (p < 0.01) in BUN, MUN, milk yield, milk protein, total solids (TS) and 3.5% FCM when supplement levels were increased. In conclusion, MFL supplementation in early lactating dairy cows could improve feed intake, nutrient digestibility, milk yield, and milk composition.

2.
Animals (Basel) ; 13(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36830462

ABSTRACT

The purpose of the current study is to determine the effects of the replacement of cassava chips with winged bean (Psophocarpus tetragonolobus) tubers (WBTs) on gas production parameters, in vitro degradability, and ruminal fermentation in ruminant diets. The study was performed using a 3 × 4 factorial arrangements and was designed using a completely random method. Factor A employed three various roughage sources that were frequently used by locals to feed ruminants: Oryza sativa L. (a1), Brachiaria ruziziensis (a2), and Pennisetum purpureum (a3). The levels of WBTs substitutions for cassava chips at 0%, 33%, 66%, and 100% in the diet were selected as factor B. The experiment's findings revealed that replacing the cassava chips in the diet with WBTs at levels of 66 and 100% enhanced the fermentation process by producing a high gas volume at 96 h when Ruzi grass (RZ) was used as the main source of roughage (p < 0.01). The interaction between the roughage source and WBTs showed that organic matter (OM) degradability improved markedly in the case of RZ grass in combination with WBTs at all levels. Both the total volatile fatty acids (TVFAs) at 8 h of incubation and the average value decreased when a complete substitution of casava chips with WBT (WBT 100%) was employed or when employing rice straw as the main source of roughage (p < 0.01). There was no interaction between WBTs and roughage source on the ammonia-nitrogen (NH3-N) concentration (ml/dL) and rumen microbial count (p > 0.05). In summary, WBTs can be used effectively when combined with grass (Ruzi and Napier). The implementation of WBTs as a novel alternative feed may effectively replace cassava chips without affecting rumen function.

3.
Animals (Basel) ; 12(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139332

ABSTRACT

This experiment was conducted to assess the effect of hydrolyzed yeast (HY) on growth performance, nutrient digestibility, rumen fermentation, and hematology in growing crossbred Bos indicus cattle. Twenty crossbred beef cattle with an initial body weight (BW) of 142 ± 12 kg were randomly assigned to one of four treatments for 90 d in a randomized complete block design (RCBD) having five blocks based on a homogenous subpopulation of sex and BW. Cattle were fed with a total mixed ration (TMR) and supplemented with HY at 0, 1, 2, and 3 g/kg dry matter (DM), respectively. Supplementation with the HY did not change average daily gain (ADG), dry matter intake (DMI), and gain to feed ratio (G:F) (p ≥ 0.06). The addition of HY did not adversely affect nutrient intake (p ≥ 0.48), while the digestibility of crude protein (CP) increased quadratically (p= 0.03) in the cattle receiving HY. The addition of HY did not affect rumen pH, but NH3-N concentration increased linearly (p = 0.02) in the cattle. The total volatile fatty acid (total VFA) increased quadratically (p= 0.03) when cattle were fed with HY supplementation. The proportion of acetate decreased cubically (p= 0.03) while propionate increased cubically (p= 0.01), resulting in a decrease in the acetate to propionate ratio (p= 0.01) when cattle were fed with HY supplementation. In addition, acetate was the lowest, but total VFA and propionate were the highest in cattle fed the HY at 2 g/kg DM. Butyrate increased cubically (p = 0.02) with the addition of HY. The protozoal and fungal populations were similar among treatments (p ≥ 0.11), but the bacterial population increased linearly (p < 0.01) with the addition of HY. Supplementation of HY did not influence blood urea nitrogen (BUN), red blood cells (RBC), hemoglobin, hematocrit, white blood cells (WBC), lymphocytes, or eosinophils (p≥ 0.10). However, monocytes and neutrophils increased linearly (p = 0.04 and p = 0.01, respectively) by HY supplementation. In conclusion, supplementation of HY at 2 g/kg DM promotes CP digestibility, rumen fermentation efficiency, and hematology but does not affect the growth performance of growing beef cattle.

4.
Vet Sci ; 9(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35878377

ABSTRACT

The objective of the present study was to analyze the effects of yeast-fermented rubber seed kernels (YERSEK) on the feed intake, hematology, microbial protein synthesis, milk yield, and milk composition in dairy cows. Six crossbred Holstein Friesian (HF) × Thai lactating dairy cows with 110 ± 10 days in milk were randomly assigned to three different amounts of YERSEK at 0%, 10%, and 20% in a concentrate mixture using a 3 × 3 repeated Latin square design. Cows were fed with concentrate diets at a concentrate-to-milk yield ratio of 1:1.5, with rice straw fed ad libitum. The inclusion of YERSEK did not adversely affect feed intake, nutrient intake, or digestibility (p > 0.05), whereas ether extract intake and digestibility linearly increased in dairy cows receiving YERSEK (p < 0.01). Increasing YERSEK levels did not adversely affect blood urea nitrogen (BUN) levels, hematological parameters, or microbial protein synthesis (p > 0.05). Supplementation of YERSEK did not influence milk production, lactose, or protein levels (p > 0.05). However, milk fat and total solids decreased linearly (p < 0.05) with the addition of YERSEK. In conclusion, in a concentrate diet, YERSEK could be used as a protein source without negative effects on feed intake, digestibility, hematology, microbial protein synthesis, or milk yield. However, it reduced the milk fat and total solids of tropical lactating dairy cows.

5.
Trop Anim Health Prod ; 54(2): 133, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35260918

ABSTRACT

This study aimed to determine the effect of replacing soybean meal (SBM) by red yeast fermented tofu waste (RYFTO) on feed intake, growth performance, carcass characteristics, and meat quality in Brahman crossbred beef cattle. A total of 12 cattle (1.5-2 years old and 275.0 ± 6.1 kg of initial body weight) were randomly allotted to three dietary treatments in completely randomized design. There were three dietary treatments as following: Control (SBM), 50%replacing SBM by red yeast fermented tofu waste (RYFTO50), and 100% replacing SBM by red yeast fermented tofu waste (RYFTO100) in concentrate diet raised for 60 days. Rice straw was used as roughage source and fed ad libitum. The results found that cattle received the diet with replacing SBM by RYFTO both RYFTO50 and RYFTO100 group affect roughage intake, total dry matter intake, and ADG (P < 0.05) except the digestibility and FCR (P > 0.05). The feed cost of roughage, concentrate, and total feed cost were lowest in RYFTO100 group when compared to the control (P < 0.05). Blood urea nitrogen was deducted when cattle received RYFTO100 when compared to the control and RYFTO50 (P < 0.05). However, the carcass characteristics and meat quality were similar among treatments (P > 0.05). In conclusion, the 100% replacing SBM by RYFTO in concentrate diet affect roughage intake and ADG without negative effect on concentrate intakes, digestibility, carcasses and meat quality. Therefore, RYFTO could be used as a protein source for partial replacement of SBM in the, concentrate diet at 50% which can lower feed cost. This study suggested that the further study should be conducted for longer period to gain the benefits of carotene in red yeast on carcass and meat quality.


Subject(s)
Biological Products , Soy Foods , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Eating , Meat , Glycine max , Thailand
6.
Vet Sci ; 8(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808746

ABSTRACT

Saccharomyces cerevisiae is a yeast strain often used to improve the feed quality of ruminants. However, S. cerevisiae has limited capacity to provide biomass when inoculated with carbon sources and a low ability to produce cellulase enzymes. Here, we hypothesized that yeast in the rumen produces a large amount of biomass and could release cellulase enzymes to break down fiber content. Therefore, the aim of this study was to screen, isolate and identify yeast from the rumen fluids of Holstein Friesian steers and measure the efficiency of biomass production and cellulase activity. A fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source was optimized. Two fistulated-crossbred Holstein Friesian steers averaging 350 ± 20 kg body weight were used to screen and isolate the ruminal yeast. Two experiments were designed: First, a 12 × 3 × 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was the isolated yeast and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. In the second experiment, potential yeasts were selected, identified, and analyzed for 7 × 4 factorial use in a completely randomized design. Factor A was the incubation times. Factor B was the isolated yeast strains, including codes H-Khon Kaen University (KKU) 20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was imposed under aerobic conditions, resulting in a total of 11 different colonies. Two appearances of colonies including asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K) were noted. Isolated yeast from the rumen capable of providing a high amount of biomass when inoculant consisted of the molasses 15% + urea 3% (M15 + U3), molasses 25% + urea 1% (M25 + U1), molasses 25% + urea 3% (M25 + U3), and molasses 25% + urea 5% (M25 + U5) when compared to the other media solution (p < 0.01). In addition, 11 isolated biomass-producing yeasts were found in the media solution of M25 + U1. There were 4 isolates cellulase producing yeasts discovered in the media solution of M25 + U1 and M25 + U5 whereas molasses 5% + urea 1% (M5 + U1), molasses 5% + urea 3% (M5 + U3), molasses 5% + urea 5% (M5 + U5), molasses 15% + urea 1% (M15 + U1), molasses 15% + urea 3% (M5 + U3), and M25 + U3 were found with 2, 3, 1, 2, 1, and 2 isolates, respectively. Ruminal yeast strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20 while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/mL) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/mL) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae at 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p < 0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar at about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. The screening and isolation of yeasts from rumen fluids resulted in 11 different yeasts being obtained. The potential yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.-KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.

7.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 653-663, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33645865

ABSTRACT

The objective of this experiment was to study the effect of feeding pellet containing high sulphur (PELFUR) diet and fresh cassava root (FCR) to Thai native beef cattle on feed use efficiency, ruminal characteristics and blood metabolites. Four male purebred Thai native beef cattle (1.5-2.0 years old) with initial body weight (BW) of 150 ± 15.0 kg were allocated with a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. Factor A was FCR supplementation at 15 and 20 g/kg of BW. Factor B was the sulphur level in the PELFUR ration at 15 and 30 g/kg of dry matter (DM). No interaction effect was found among FCR supplementation and PELFUR in terms of feed intake and nutrient intake (p > 0.05). Cyanide intake was significantly increased based on FCR supplementation (p < 0.05), whereas sulphur intake was increased by level addition of PELFUR levels (p < 0.05). There were interaction effects among FCR supplementation and PELFUR on digestibility coefficients of DM and organic matter (OM) (p < 0.05). FCR supplementation at 20 g/kg BW with PELFUR 30 g/kg demonstrated the highest digestibility of DM and OM. Moreover, interactions were observed between FCR and PELFUR for bacterial populations (p < 0.01). The populations of bacteria were highest in FCR supplementation at 20 g/kg BW with PELFUR 30 g/kg at various feeding times. An interaction effect from among feeding FCR with PELFUR was found on blood thiocyanate concentrations at various feeding times (p < 0.01). The highest mean values of blood thiocyanate were observed when feeding FCR at 20 g/kg BW with PELFUR at 30 g/kg. No interaction effect was found between FCR and PELFUR on total volatile fatty acids (VFA) and their profiles (p > 0.05). However, the proportions of the total VFA at 0 and 4 h post-feeding were increased when FCR at 20 g/kg BW was supplemented (p < 0.01). FCR at 20 g/kg BW could enhance propionate (C3) at 4 h post-feeding when compared with FCR at 15 g/kg BW (p < 0.01). Moreover, supplementation of PELFUR at 30 g/kg increased the total VFA at 0 and 4 h post-feeding, whereas the concentration of C3 at 4 h post-feeding was enhanced (p < 0.05). However, no significant changes were found for any parameters among treatments and between the main effect of FCR and PELFUR supplementation (p > 0.05). In conclusion, feeding of two combinations (FCR 20 g/kg BW with PELFUR 30 g/kg) could promote the nutrient digestibility, the bacterial populations and the rate of disappearance of cyanide without having any adverse effect on rumen fermentation.


Subject(s)
Manihot , Rumen , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cattle , Diet/veterinary , Dietary Supplements , Digestion , Fermentation , Rumen/metabolism , Sulfur , Thailand
8.
Trop Anim Health Prod ; 52(6): 3567-3573, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32944871

ABSTRACT

The aim of this experiment was to test the effect of yeast-fermented de-hulled rice (YDR) levels of protein-rich feed with different kinds of roughages on in vitro gas production, nutrient degradability, and rumen fermentation. The treatments were randomly assigned according to a 2 × 4 factorial arrangement in a completely randomized design (CRD). The two experimental factors were comprised of two roughages (R) (untreated rice straw (RS) and sweet grass hay (SGH)) and four ratios of roughage to yeast-fermented de-hulled rice (R:YDR) (100:0, 75:25, 50:50, and 25:75). Thus, there were 8 treatment combinations. The results revealed that the interaction between R and R:YDR ratios influenced on the gas production rate constant for the insoluble fraction ratio (c) (P < 0.01). The in vitro dry mater degradability (IVDMD) was improved by SGH and R:YDR ratios (P < 0.05). Supplementation of YDR with both of roughage sources (RS and SGH) increased propionate (C3) (P < 0.05) and total VFA production (P < 0.01); both factors showed interactive effects on rumen methane production (P < 0.01). Moreover, bacterial population was significantly increased by the SGH:YDR ratios (P < 0.05). Therefore, it could be summarized that supplementing YDR, an enriched protein source with SGH:YDR ratio at 50-75:50-25 ratio significantly enhanced nutrient degradability and in vitro rumen fermentation efficiency.


Subject(s)
Dietary Fiber/analysis , Digestion , Fermentation , Gases/metabolism , Nutrients/physiology , Oryza/chemistry , Saccharomyces cerevisiae/chemistry , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Edible Grain/chemistry , Random Allocation , Rumen/physiology
9.
Animals (Basel) ; 9(9)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31470582

ABSTRACT

The object of this present work was to determine the effects of supplementation with pellets containing royal poinciana seed meal (PEREM) on feed use, ruminal fermentation efficiency, microbial protein synthesis, blood metabolites and mitigation of methane (CH4) emissions in cattle. The animals used in this experiment were four male Thai native beef cattle (Bos indicus) with initial body weights (BWs) of 125 ± 5.0 kg. Each of the animals were randomly assigned to receive PEREM doses at 0, 50, 100 and 150 g/d, respectively, according to a 4 × 4 Latin square design. Concentrates were fed at 0.5% BW daily, and rice straw was fed ad libitum. There were no significant differences (p > 0.05) on intakes of rice straw, concentrate and total diet. The intake of nutrients did not change among the levels of PEREM supplementation (p > 0.05), except for an intake of crude protein, which was linearly enhanced when increasing the dose of PEREM (p < 0.05). The inclusion of different doses of PEREM did not adversely affect the digestibility of dry matter, organic matter, crude protein, neutral detergent fiber and acid detergent fiber (p > 0.05). Adding various doses of PEREM did not alter ruminal pH and ruminal temperature, while concentrations of ammonia-nitrogen were significantly increased with an increased dose of PEREM supplementation (p < 0.01). The increasing doses of PEREM linearly reduced protozoal numbers (p < 0.01), with the lowest concentration when PEREM was added at 150 g. PEREM supplementation did not change (p > 0.05) the concentration of acetic acid or butyric acid or the ratio of acetic acid to propionic acid. Nevertheless, the total volatile fatty acid and propionic acid content were changed among PEREM levels (p < 0.05), which were linearly increased with an increasing dose of PEREM. At 4 h post feeding, the CH4 concentrations in the rumen of the animal were linearly reduced when the dose of pellets was increased (p < 0.01). In addition, the inclusion of PEREM did not adversely affect other blood metabolites, namely total protein, creatinine and albumin (p > 0.05). Furthermore, microbial crude protein and efficiency of microbial N synthesis were linearly enhanced when increasing levels of PEREM were added. The feeding of PEREM at 150 g/d might be an alternative with the potential to improve rumen fermentation efficiency and reduce the environmental effects produced by ruminants.

11.
Trop Anim Health Prod ; 51(6): 1531-1538, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30963404

ABSTRACT

Plant phytophenols especially condensed tannins (CT) and saponins (SP) have been demonstrated to impact on rumen fermentation. Dragon fruit (Hylocereus undatus) peel powder (DFPP) contains both CT and SP. The current study aimed to investigate the influence of DFPP and varying levels of concentrate and roughage ratios on gas production kinetics, nutrient degradability, and methane production "using in vitro gas production technique." The dietary treatments were arranged according to a 3 × 5 Factorial arrangement in a completely randomized design. The two experimental factors consisted of the roughage to concentrate (R:C) ratio (100:0, 70:30, and 30:70) and the levels of DFPP supplementation (0, 1, 2, 3, and 4% of the substrate) on DM basis. The results revealed that the R:C ratio at 30:70 had the highest cumulative gas production when compared to other ratios (P < 0.01). The in vitro true dry matter degradability at 12 and 24 h was affected by R:C ratio (P < 0.01). Furthermore, volatile fatty acids (VFA) and propionate (C3) were significantly increased by the levels of DFPP, while acetate (C2) and C2:C3 ratios were decreased (P < 0.05). The rumen protozoal population was significantly decreased by DFPP supplementation (P < 0.05). Rumen methane production was significantly impacted by R:C ratios and decreased when the level of DFPP increased (P < 0.01), while NH3-N and ruminal pH were not influenced by the DFPP supplement. It could be summarized that supplementation of DFPP resulted in improved rumen fermentation kinetics and could be used as a dietary source to mitigate rumen methane production, hence reducing greenhouse gas production.


Subject(s)
Cactaceae/chemistry , Digestion/physiology , Fruit/chemistry , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Dietary Supplements , Fatty Acids, Volatile/metabolism , Fermentation , Male , Propionates/metabolism , Rumen/metabolism , Saponins/metabolism
12.
Trop Anim Health Prod ; 51(3): 523-528, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30291496

ABSTRACT

Feed ingredients costs have been impacting the production cost. Attempts have been made to use local feed resources in order to reduce feed costs. The objective of this study was to identify effect of using crushed tamarind seed meal (TSM) in concentrate mixture on rumen fermentation, dry matter intake, and digestibility of dairy steers. Four rumen-fistulated dairy steers were used in a 4 × 4 Latin Square Design. Four levels of TSM were used to replace rice bran (RB) in the concentrate mixtures in four treatments (T1 = 0% replacement of RB, T2 = 30% replacement of RB, T3 = 60% replacement of RB, T4 = 100% replacement of RB). The findings revealed that replacement of TSM for RB resulted in similar digestibility of nutrients and intakes (P > 0.05). However, rumen fermentation parameters were remarkably improved, namely total VFA and the concentration of C3 especially at the highest level of replacements (100%, T4), (P < 0.05). Rumen protozoal population was found lowered in all replacements, especially those in higher levels of TSM replacement. Consequently, the rumen methane productions were significantly reduced. TSM can be a promising energy source to replace rice bran, hence lowering the cost of concentrate mixture.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Oryza , Tamarindus , Animal Nutritional Physiological Phenomena , Animals , Digestion/physiology , Fermentation , Male , Rumen , Seeds
13.
Trop Anim Health Prod ; 49(4): 829-833, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28299520

ABSTRACT

The objective of this study was to investigate the effect of tropical legume (Phaseolus calcaratus) mixed with ruzi grass feeding on the performance of lactating dairy cows. Eighty-eight lactating dairy cows from 22 smallholder dairy farms northeast of Thailand were assigned to respective dietary treatments according to a Randomized Completely Block Design (RCBD). Four cows were selected from each farm and were allocated into two different feeding groups as follows: ruzi grass and P. calcaratus mixed with ruzi grass (1:1 ratio), respectively. All cows were fed with roughage ad libitum with 1:2 ratio of concentrate diet to milk yield. The results revealed that total dry matter intake, ruminal volatile fatty acids, and ammonia nitrogen concentration were enhanced when cows were fed with P. calcaratus mixed with ruzi grass (P < 0.05). Moreover, feeding tropical legume mixed with ruzi grass could increase milk production and milk protein in this study. Importantly, an economical assessment showed that milk income and the profit from milk sale were significantly greater in cows fed the mixture of roughage than those from the non-mixed group. This study concluded that high-quality roughage as tropical legume mixed with ruzi grass at the ratio of 1:1 brought out the remarkable and practical implementation for smallholder dairy farms, and the intervention was practical and deserving of more on-farm intervention.


Subject(s)
Animal Feed , Dairying/methods , Lactation , Phaseolus , Poaceae , Animals , Cattle , Diet/veterinary , Dietary Fiber/pharmacology , Farms , Fatty Acids, Volatile/metabolism , Female , Lactation/drug effects , Milk/metabolism , Milk Proteins/analysis , Poaceae/metabolism , Random Allocation , Rumen/metabolism , Thailand
14.
Anim Sci J ; 87(3): 370-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26207338

ABSTRACT

This study aimed to investigate the effect of grape pomace powder levels and roughage sources on gas kinetics, digestibility and fermentation of swamp buffaloes by using in vitro techniques. The experimental design was a 2 × 4 factorial arrangement in a completely randomized design. Factor A was two sources of roughage (untreated rice straw, RS, and 3% urea treated rice straw, UTRS) and factor B was four levels of grape pomace powder (GPP) supplementation (0, 2, 4, 6% of substrate) on a dry matter basis. Results revealed that GPP supplementation at 2, 4 and 6% of substrate influenced gas kinetics. Cumulative gas production tended to be lower in the supplemented group. In vitro true digestibility was higher in the GPP supplementation at 2% with UTRS while microbial mass was higher in the supplemented groups. Supplementation of GPP significantly increased the total volatile fatty acids, especially propionate. Calculated methane production was subsequently decreased in the supplemented groups. Bacterial population was higher while protozoal population was lower by GPP supplementation. It could be concluded that supplementation of GPP at 2% of the substrate with UTRS improved in vitro true digestibility, rumen fermentation end-products as well as reducing methane production.


Subject(s)
Animal Feed , Buffaloes/physiology , Dietary Supplements , Digestion , Fermentation , Oryza , Rumen/physiology , Urea , Vitis , Animals , In Vitro Techniques , Male
15.
Trop Anim Health Prod ; 46(2): 293-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24105031

ABSTRACT

Four Thai male native beef cattle, initial body weight (BW) of 100 ± 3.0 kg were randomly assigned in a 4 × 4 Latin square design to receive four dietary treatments with inclusion of urea calcium sulphate mixture (U-cas) in feed block (FB) at 0, 120, 150, and 180 g/kg dry matter (DM). Total intakes were increased with the increasing level of U-cas supplementation in FB and the result obtained the highest when supplementation of U-cas in FB at 180, followed by 150, 120, and 0 g/kg DM, respectively. Moreover, supplementation of U-cas in FB at 180 g/kg DM could reduce total N excretion (4.1 g/day), as compared to others treatments, while N retention and proportion of N retention to N intake were increased up to 6.9 g/day and 14.9 %, respectively. On the other hand, the blood biochemistry and hematological parameters were not different among treatments except concentration of plasma urea N, plasma glucose, and total blood protein were improved especially with U-cas supplementation at 180 g/kg DM in FB. In conclusion, supplementation of U-cas at 180 g/kg in FB improved feed intake, N utilization, and blood biochemistry in Thai native beef cattle fed on rice straw.


Subject(s)
Cattle/blood , Cattle/metabolism , Dietary Supplements , Nitrogen/metabolism , Urea/pharmacology , Animal Feed/analysis , Animals , Blood Urea Nitrogen , Body Weight , Diet/veterinary , Digestion/drug effects , Male , Urea/administration & dosage
16.
Trop Anim Health Prod ; 44(1): 35-42, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22072076

ABSTRACT

Four, rumen fistulated crossbred (Brahman × native) beef cattle steers were randomly assigned to receive four dietary treatments according to a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. Factor A was carbohydrate source; cassava chip (CC) or CC + rice bran at a ratio 3:1 (CR3:1) and Factor B was cotton seed meal level (CM); and 109 g CP/kg (LCM) and 328 g CP/kg (HCM) at similar overall CP levels (490 g CP/kg). The animals were fed 5 g concentrate/kg BW, and urea-treated rice straw (UTS) (50 g urea/kg DM) was fed ad libitum. Carbohydrate source did not affect feed intake, nutrient digestibility, blood urea nitrogen, rumen fermentation, or microbial protein synthesis; however, animals fed with CC had a higher population of total viable bacteria than the CR3:1 treatment (P<0.05). Animals that received HCM had a lower total feed intake while ruminal pH was higher than the LCM fed treatment (P<0.05). The population of total viable and cellulolytic bacteria in animals that received HCM were lower than the LCM fed treatment (P<0.05). Moreover, use of HCM in beef cattle diets resulted in lower microbial protein synthesis when compared with the LCM fed treatment (P<0.05) although efficiency of microbial protein synthesis was nonsignificantly different among treatments. Therefore, cassava chip combined with rice bran can be used in a concentrate diet for beef cattle. It is also noted that a high level of cotton seed meal in the concentrate may impact rumen fermentation and animal performance.


Subject(s)
Animal Feed/analysis , Cattle/metabolism , Dietary Carbohydrates/administration & dosage , Rumen/metabolism , Animal Husbandry/methods , Animals , Bacterial Proteins/biosynthesis , Cattle/microbiology , Cattle/parasitology , Cattle/physiology , Cottonseed Oil/administration & dosage , Cottonseed Oil/metabolism , Dietary Carbohydrates/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Digestion , Feces/microbiology , Feces/parasitology , Fermentation , Fungal Proteins/biosynthesis , Male , Manihot/chemistry , Oryza/chemistry , Protozoan Proteins/biosynthesis , Random Allocation , Rumen/microbiology , Rumen/parasitology , Thailand
17.
Trop Anim Health Prod ; 43(8): 1517-24, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21479843

ABSTRACT

This study was designed to determine effect of various plant protein sources in high-quality feed block (HQFB) on feed intake, rumen fermentation, and microbial population in swamp buffalo. Four rumen-fistulated swamp buffaloes (Bubalus bubalis) were randomly assigned according to a 4 × 4 Latin square design. Four kinds of plant protein sources (coarse rice bran (CRB), cassava hay (CH), Phaseolus calcaratus hay, and mulberry hay (MH)) were mixed in the HQFB. HQFBs were allowed to be licked at free choice, and urea-lime-treated rice straw (ULRS) were fed ad libitum. It was found that bacterial population and fungal zoospores in CH-fed group tended to be higher than those in other groups. Moreover, protozoal population in CH, P. calcaratus hay, and MH were lower than those in CRB supplemented group (P < 0.05). Cellulolytic bacterial population was highest in CH-fed group while proteolytic bacteria population was highest in P. calcaratus hay-fed group (P < 0.05). CH-fed group had higher ULRS intake than those in other groups (P < 0.05). Nutrient digestibility of CP, NDF, and ADF in CH-fed group was significantly higher than those in other groups (P < 0.05). Total VFA was highest in CH-fed group (P < 0.05). N absorption was highest in CH-fed group (P < 0.05). Based on this study, it could be concluded that cassava hay, P. calcaratus hay, and mulberry hay are potential to be used as protein sources in the HQFBs especially cassava hay.


Subject(s)
Buffaloes/metabolism , Buffaloes/microbiology , Dietary Proteins/metabolism , Feeding Behavior , Magnoliopsida , Plant Proteins/metabolism , Rumen/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Buffaloes/parasitology , Dietary Proteins/analysis , Fermentation , Plant Proteins/analysis , Random Allocation , Rumen/microbiology , Rumen/parasitology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...