Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Dent Mater ; 40(6): 889-896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692997

ABSTRACT

OBJECTIVE: The current study aimed to evaluate the effects of different combinations of chemical and mechanical challenges on the failure load, failure mode and composition of the resulting fracture surfaces of resin-composite restorations. METHODS: Three resin composites were used to fill dentin disks (2 mm inner diameter, 5 mm outer diameter, and 2 mm thick) made from bovine incisor roots. The model restorations, half of which were preconditioned with a low-pH buffer (48 h under pH 4.5), were subjected to diametral compression with either a monotonically increasing load (fast fracture) or a cyclic load with a continuously increasing amplitude (accelerated fatigue). The load or number of cycles to failure was noted. SEM was performed on the fracture surfaces to determine the proportions of dentin, adhesive, and resin composite. RESULTS: Both cyclic fatigue and acid preconditioning significantly reduced the failure load and increased the proportion of interfacial failure in almost all the cases, with cyclic fatigue having a more pronounced effect. Cyclic fatigue also increased the amount of adhesive/hybrid layer present on the fracture surfaces, but the effect of acid preconditioning on the composition of the fracture surfaces varied among the resin composites. SIGNIFICANCE: The adhesive or hybrid layer was found to be the least resistant against the chemomechanical challenges among the components forming the model restoration. Increasing such resistance of the tooth-restoration interface, or its ability to combat the bacterial actions that lead to secondary caries following interfacial debonding, can enhance the longevity of resin-composite restorations.


Subject(s)
Composite Resins , Dental Restoration Failure , Dental Restoration, Permanent , Dental Stress Analysis , Materials Testing , Composite Resins/chemistry , Cattle , Animals , Surface Properties , Microscopy, Electron, Scanning , Resin Cements/chemistry , Hydrogen-Ion Concentration , Dentin , Stress, Mechanical
2.
J Mech Behav Biomed Mater ; 155: 106543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636445

ABSTRACT

The potential of using specimens with a double-semicircular-notched configuration for performing tensile tests of orthodontic thermoplastic aligner materials was explored. Unnotched and double-semicircular-notched specimens were loaded in tension using a universal testing machine to determine their tensile strength, while finite element analysis (FEA) and digital image correlation (DIC) were used to estimate stress and strain, respectively. The shape did affect the tensile strength, demonstrating the importance of unifying the form of the specimen. During the elastic phase under tension, double-semicircular-notched specimens showed similar behavior to unnotched specimens. However, great variance was observed in the strain patterns of the unnotched specimens, which exhibited greater chance of end-failure, while the strain patterns of the double-semicircular-notched specimens showed uniformity. Considerable agreement between the theoretical (FEA) and practical models (DIC) further confirmed the validity of the double-semicircular-notched models.


Subject(s)
Finite Element Analysis , Materials Testing , Stress, Mechanical , Tensile Strength , Materials Testing/instrumentation , Mechanical Tests , Plastics , Temperature , Orthodontic Appliances , Mechanical Phenomena
3.
Int J Pharm ; 654: 123956, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38428547

ABSTRACT

Tabletability is an outcome of interparticulate bonding area (BA) - bonding strength (BS) interplay, influenced by the mechanical properties, size and shape, surface energetics of the constituent particles, and compaction parameters. Typically, a more plastic active pharmaceutical ingredient (API) exhibits a better tabletability than less plastic APIs due to the formation of a larger BA during tablet compression. Thus, solid forms of an API with greater plasticity are traditionally preferred if other critical pharmaceutical properties are comparable. However, the tabletability flip phenomenon (TFP) suggests that a solid form of an API with poorer tabletability may exhibit better tabletability when formulated with plastic excipients. In this study, we propose another possible mechanism of TFP, wherein softer excipient particles conform to the shape of harder API particles during compaction, leading to a larger BA under certain pressures and, hence, better tabletability. In this scenario, the BA-BS interplay is dominated by BA. Accordingly, TFP should tend to occur when API solid forms are formulated with a soft excipient. We tested this hypothesis by visualizing the deformation of particles in a model compressed tablet by nondestructive micro-computed tomography and by optical microscopy when the particles were separated from the tablet. The results confirmed that soft particles wrapped around hard particles at their interfaces, while an approximately flat contact was formed between two adjacent soft particles. In addition to the direct visual evidence, the BA-dominating mechanism was also supported by the observation that TFP occurred in the p-aminobenzoic acid polymorph system only when mixed with a soft excipient.


Subject(s)
Excipients , Excipients/chemistry , X-Ray Microtomography , Particle Size , Pressure , Tablets/chemistry , Drug Compounding/methods , Tensile Strength , Powders/chemistry
4.
J Adhes Dent ; 26(1): 65-78, 2024 Jan 15.
Article in German | MEDLINE | ID: mdl-38379400

ABSTRACT

PURPOSE: Multiple materials are found in the root canal after fiber-post cementation. The layer of a bioceramic-based (BC) sealer may affect the bond strength (σBS) of the fiber post in the root canal. The purpose of this study was to employ multilayer compos-ite-disk models in diametral compression to investigate whether the bond strength between a fiber post and root dentin can be in-creased by the application of a primer on the BC sealer. MATERIALS AND METHODS: The multilayers of materials in the root canal required 3D finite-element (FE) stress analyses (FEA) to pro-vide precise σBS values. First, BC sealer was characterized using x-ray powder diffraction (XRD) to determine when the sealer com-pletely set and the types of crystals formed to select which primer to apply to the sealer. We selected a 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP)-based primer to treat the BC sealer before post cementation. Ultra-highspeed (UHS) imaging was utilized to analyze the crack initiation interface. The obtained failure force was used in FE analysis to calculate σBS. RESULTS: UHS imaging validated the fracture interface at the post-dentin junction as FEA simulations predicted. σBS values of the fiber posts placed with various material combinations in the root canal were 21.1 ± 3.4 (only cement/ post), 22.2 ± 3.4 (BC sealer/cement/post) and 28.6 ± 4.3 MPa (10-MDP primer treated BC sealer/cement/post). The 10-MDP-treated BC sealer exhibited the highest σBS (p < 0.05). CONCLUSION: The multilayer composite disk model proved reliable with diametral compression testing. The presence of BC sealer in the root canal does not reduce σBS of the fiber post. Conditioning the BC sealer layer with 10-MDP primer before fiber-post cemen-tation increases σBS.


Subject(s)
Dental Bonding , Methacrylates , Root Canal Filling Materials , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/pharmacology , Epoxy Resins/chemistry , Epoxy Resins/pharmacology , Dental Pulp Cavity , Materials Testing , Dentin
5.
Materials (Basel) ; 16(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37629848

ABSTRACT

The objective of this study was firstly to assess the demineralization inhibitory effect of ion-releasing restorations in enamel adjacent to restoration using a biofilm caries model and secondly to compare the effect to that in a chemical caries model. Fifty-six bovine incisors were filled with either Surefil one (SuO), Cention N (CN) (both ion-releasing materials), Ketac-Molar (GIC) or Powerfill resin composite (RC). The restored teeth were then randomly divided into 2 groups according to the used caries model (biofilm or chemical caries model). The micro-computed tomography (MicroCt) and optical coherence tomography (OCT) outcome measures used to evaluate demineralization inhibition effects were lesion depth, LD and increase in OCT integrated reflectivity, ΔIR, at five different depths. It was observed that all outcome measures of CN were statistically the same as those of GIC and conversely with those of RC. This was also the case for SuO except for LD, which was statistically the same as RC. When comparing the two caries models, LD of the biofilm model was statistically deeper (p < 0.05) than the chemical model for all four materials. In conclusion, CN and SuO have similar demineralization inhibitory effects as GIC, and the biofilm caries model is more discriminatory in differentiating demineralization inhibitory effects of ion-releasing restorative material.

6.
Dent Mater ; 39(10): 938-945, 2023 10.
Article in English | MEDLINE | ID: mdl-37648562

ABSTRACT

OBJECTIVE: To investigate the influences of root canal instrumentation on the load capacity and fracture modes of tooth roots under axial compression by performing mechanical tests and finite element analysis (FEA). METHODS: Thirty bovine incisor roots were trimmed into cylinders of 5.0 mm diameter. They were randomly divided into two groups, one with root canals instrumented to ∼2.0 mm in diameter, and one without instrumentation. The specimens were fractured under uniaxial compression at a crosshead speed of 0.2 mm/min, and then micro-CT was used to reveal the fracture patterns in three dimensions. FEA was further performed, using the extended finite element method (XFEM), to compare the compression-induced stress distributions and the initiation and propagation of root fractures in both groups. RESULTS: The mean fracture load of the non-instrumented group (2334 ± 436 N) was statistically significantly higher than that of the instrumented group (1857 ± 377 N) (p < 0.01). Three types of root fractures were identified according to the path and length of the cracks: end-face crack, partial-length crack, and full-length crack. As to the fracture modes, the incidence of partial-length root fracture was the highest in both groups (60% for the non-instrumented group and 53.3% for the instrumented group), followed by that of full-length fracture (26.7% and 40%, respectively) and then end-face fracture (13.3% and 6.7%, respectively). The percentage of full-length fracture was slightly higher in the instrumented group. FEA showed that the compression induced higher Tresca stresses but lower maximum principal stresses in the canal walls of the instrumented group. The XFEM simulations predicted that the fracture of both groups initiated from the outer root surface near an end face and propagated axially to the middle third of the root and radially towards the root canal. These numerical results agreed well with our experimental findings. SIGNIFICANCE: Within the limitation of this study, it was found that root canal instrumentation could significantly decrease the load capacity of tooth roots and potentially increase their susceptibility to full-length root fracture under uniaxial compression.


Subject(s)
Root Canal Therapy , Tooth Root , Animals , Cattle , Finite Element Analysis , X-Ray Microtomography
7.
Dent Mater J ; 42(5): 659-668, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37612060

ABSTRACT

The study aimed to compare shrinkage displacements of fully and partially bonded resin composite restorations (RCRs). Two groups (n=5) Class-I RCR evaluated: Group 1 (G1) fully bonded and Group 2 (G2) debonded at the floor. Experimental results were compared with predictions from simple theory and finite element analysis (FEA). The experimental linear surface displacement (LSD) was G1 62.5±5.2 µm and G2 32.8±4.0 µm. Theoretically-predicted LSD for G1 60.1±7.4 µm and G2 31.3±7.5 µm. FEA-predicted LSD were G1 65.2 µm and G2 34.6 µm. The experimental volumetric surface displacement (VSD) was G1 1.22±0.2 mm3 and G2 0.63±0.2 mm3. Theoretically-predicted VSD for G1 1.36±0.2 mm3 and G2 0.67±0.2 mm3. No significant difference (p>0.05) was found in LSD and VSD among the experimental, theoretical and FEA in the same group. Significant differences (p<0.05) were noted between the two groups, with LSD and VSD of G2 values being almost half of G1. This pattern gave an insight of a debond restoration characteristics.

8.
Dent Mater J ; 42(5): 692-699, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37612062

ABSTRACT

This study evaluated the interfacial integrity of deep (6 mm) Class-II (OM/OD) restorations placed using different bulk-fill resin composites [Filtek™ Bulk Fill Flowable Restorative (BF) and Filtek™ Bulk Fill Posterior Restorative (BP) (3M ESPE, St. Paul, MN, USA)] of different increment thicknesses (2 or 4 mm). BP was used for capping in all cases, while Filtek™ Z250 Universal Restorative (3M ESPE) was used as the control material. Interfacial debonding was measured during curing through acoustic emission (AE), followed by image analysis using micro-computed tomography and scanning electron microscopy. Microhardness testing was also conducted to assess degree of conversion. Depth of cure was adequate in all restorations. Specimens with 4-mm thick first increment of BF, which had a higher shrinkage strain, produced most AE events and debonding. Thus, bulk filling of deep cavities using bulk-fill resin composites with a high shrinkage strain should be avoided.

9.
J Mech Behav Biomed Mater ; 142: 105847, 2023 06.
Article in English | MEDLINE | ID: mdl-37127010

ABSTRACT

PURPOSE: This study aimed to evaluate the stress distribution and microgap formation in implant assemblies with conical abutments made of different materials under an oblique load. MATERIALS AND METHODS: The mechanical behavior of an implant assembly with a titanium abutment was analyzed and compared with that of an assembly with a Y-TZP abutment using finite element analysis (FEA). A torque of 20 Ncm was first applied to the abutment screw, followed by oblique loads of 10 N-280 N applied to the prosthesis placed on the implant. The maximum stress in the abutment screw, the microgap formation process, and the critical load for bridging the internal implant space were evaluated. RESULTS: No significant difference in stress distribution between the two cases was observed, with the stresses being mainly concentrated at the top half of the screw (the predicted maximum von Mises stress was approximately 1200 MPa at 280 N). The area in contact at the implant-to-abutment interface decreased with increasing load for both abutments, with the critical load for bridging the internal implant space being roughly 140 N. The maximum gap size being was approximately 470 µm with either abutment. CONCLUSION: There was no significant difference in the stress distribution or microgap formed between implant assemblies with titanium and Y-TZP abutments having an internal conical connection.


Subject(s)
Dental Implants , Finite Element Analysis , Titanium , Torque , Dental Stress Analysis , Stress, Mechanical
10.
J Dent Sci ; 18(2): 791-800, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37021211

ABSTRACT

Background/purpose: Clenching is a dental parafunctional disorder that jeopardizes the life of teeth and/or dental prostheses. Computer-aided design and computer-aided manufacturing (CAD/CAM)-fabricated or 3-dimensional-printed dental prostheses are aesthetic, strong, and of good quality, but noticeable damage can still be observed after clenching. Stress analysis of synthetic ceramic assemblies with various parameters was conducted to provide data that may be used to improve the fabrication of CAD/CAM-fabricated dental prostheses. Materials and methods: Abaqus software was used to run the simulations. A total of 96 axisymmetric finite element ceramic assembly models were simulated under 800 N vertical loading and different contact radii (0.25, 0.5, 0.75, 1.0 mm), materials (IPS e.max CAD and Vita Enamic), layer thicknesses and combinations. Results: Four-layered ceramic assembly models produced promising results with the following parameters: contact radius of at least 0.5 mm, total thickness of at least 0.5 mm, and use of IPS e.max CAD as the first layer and Vita Enamic as the second layer without cement. Conclusion: The ideal four-layered assembly model design uses 0.25-mm-thick IPS e.max CAD as its outer layer to simulate enamel binding and 0.25-mm-thick Vita Enamic as its inner layer to imitate the natural tooth. This design may be used as reference for prosthodontic treatment.

11.
J Endod ; 49(6): 703-709, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36972896

ABSTRACT

INTRODUCTION: Vertical root fracture (VRF) in root-canal-treated teeth frequently results in tooth loss, partly because VRFs are difficult to diagnose and when detected the fracture is often beyond the point of preservation with surgical intervention. Nonionizing magnetic resonance imaging (MRI) has demonstrated the ability to detect small VRFs, but it is unknown how its diagnostic capabilities compare with the current imaging standard for VRF detection, cone-beam computed tomography (CBCT). This investigation aimed to compare the sensitivity and specificity between MRI and CBCT for detecting VRF, using micro-computed tomography (microCT) as a reference. METHODS: A total of 120 extracted human tooth roots were root canal treated using common techniques, and VRFs were mechanically induced in a proportion. Samples were imaged using MRI, CBCT, and microCT. Axial MRI and CBCT images were examined by 3 board-certified endodontists, who evaluated VRF status (yes/no) and gave a confidence assessment for that decision, from which a receiver operating characteristic curve was generated. Intra- and inter-rater reliability were calculated, sensitivity and specificity, and area under the curve. RESULTS: Intra-rater reliability was 0.29-0.48 for MRI and 0.30-0.44 for CBCT. Inter-rater reliability for MRI was 0.37 and for CBCT 0.49. Sensitivity was 0.66 (95% confidence interval [CI], 0.53-0.78) and 0.58 (95% CI, 0.45-0.70), and specificity 0.72 (95% CI, 0.58-0.83) and 0.87 (95% CI, 0.75-0.95) for MRI and CBCT, respectively. Area under the curve was 0.74 (95% CI, 0.65-0.83) for MRI and 0.75 (95% CI, 0.66-0.84) for CBCT. CONCLUSIONS: There was no significant difference in sensitivity or specificity between MRI and CBCT in detecting VRF, despite the early-stage development of MRI.


Subject(s)
Spiral Cone-Beam Computed Tomography , Tooth Fractures , Humans , X-Ray Microtomography , Tooth Fractures/diagnostic imaging , Tooth Root/diagnostic imaging , Reproducibility of Results , Sensitivity and Specificity , Cone-Beam Computed Tomography/methods , Magnetic Resonance Imaging
12.
Dent Mater ; 39(3): 320-332, 2023 03.
Article in English | MEDLINE | ID: mdl-36822895

ABSTRACT

OBJECTIVES: This study utilised an Artificial Intelligence (AI) method, namely 3D-Deep Convolutional Generative Adversarial Network (3D-DCGAN), which is one of the true 3D machine learning methods, as an automatic algorithm to design a dental crown. METHODS: Six hundred sets of digital casts containing mandibular second premolars and their adjacent and antagonist teeth obtained from healthy personnel were machine-learned using 3D-DCGAN. Additional 12 sets of data were used as the test dataset, whereas the natural second premolars in the test dataset were compared with the designs in (1) 3D-DCGAN, (2) CEREC Biogeneric, and (3) CAD for morphological parameters of 3D similarity, cusp angle, occlusal contact point number and area, and in silico fatigue simulations with finite element (FE) using lithium disilicate material. RESULTS: The 3D-DCGAN design and natural teeth had the lowest discrepancy in morphology compared with the other groups (root mean square value = 0.3611). The Biogeneric design showed a significantly (p < 0.05) higher cusp angle (67.11°) than that of the 3D-DCGAN design (49.43°) and natural tooth (54.05°). No significant difference was observed in the number and area of occlusal contact points among the four groups. FE analysis showed that the 3D-DCGAN design had the best match to the natural tooth regarding the stress distribution in the crown. The 3D-DCGAN design was subjected to 26.73 MPa and the natural tooth was subjected to 23.97 MPa stress at the central fossa area under physiological occlusal force (300 N); the two groups showed similar fatigue lifetimes (F-N curve) under simulated cyclic loading of 100-400 N. Designs with Biogeneric or technician would yield respectively higher or lower fatigue lifetime than natural teeth. SIGNIFICANCE: This study demonstrated that 3D-DCGAN could be utilised to design personalised dental crowns with high accuracy that can mimic both the morphology and biomechanics of natural teeth.


Subject(s)
Artificial Intelligence , Crowns , Dental Prosthesis Design , Computer-Aided Design , Dental Porcelain , Algorithms , Dental Stress Analysis
13.
J Prosthet Dent ; 129(1): 181-190, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34023142

ABSTRACT

STATEMENT OF PROBLEM: The cantilevered resin-bonded fixed dental prosthesis (RBFDP) is a feasible and minimally invasive treatment option to restore a single missing tooth, especially when the missing tooth space is small (<7 mm) and cost-effectiveness is essential. However, its long-term survival needs to be improved by increasing its structural strength and interfacial adhesion. PURPOSE: The purpose of this study was to improve the interfacial bonding and to enhance the structural strength of a 2-unit inlay-retained cantilevered RBFDP with a 2-step numerical shape optimization. MATERIAL AND METHODS: A finite element model of a mandibular first molar with a second premolar pontic was constructed. A load of 200 N simulating the average occlusal force was applied on the mesial fossa of the pontic. In the first step, an in-house user-defined material subroutine was used to generate the cavity preparation. The subroutine iteratively changed the tooth tissues next to the pontic to composite resin according to the local stresses until convergence was achieved. In the second step, the subroutine was used to optimize the placement of fibers in the pontic by placing fibers in high-stress regions. To assess the debonding resistance and load capacity of the optimized and conventional designs, further analyses were conducted to compare their stresses at the tooth-restoration interface and those within the restoration. RESULTS: Shape optimization resulted in a shovel-shaped cavity preparation and a pontic with fibers placed near the occlusal surface of the connector region. With the optimized cavity preparation only, the maximum principal stress within the restoration and the tooth structure was reduced from 639.4 MPa to 525.4 MPa and from 381.7 MPa to 352.8 MPa, respectively. With the embedded fibers, the shovel-shaped cavity preparation reduced the maximum interfacial tensile stress by approximately 70% (conventional: 189.6 MPa versus optimized: 57.0 MPa) and the peak maximum principal stress of the veneering composite resin by 45% (conventional: 638.8 MPa versus optimized: 356.5 MPa). The peak maximum principal stress was also reduced for the remaining tooth structure by approximately 30% (conventional: 372.2 MPa versus optimized: 253.1 MPa). CONCLUSIONS: Shape optimization determined that a shovel-shaped retainer with fibers placed near the occlusal surface of the connector area can collectively reduce the interfacial and structural stresses of the 2-unit cantilevered fiber-reinforced RBFDP. This may offer a more conservative treatment option for replacing a single missing tooth.


Subject(s)
Dental Bonding , Composite Resins/chemistry , Inlays , Denture, Partial, Fixed , Finite Element Analysis , Dental Stress Analysis/methods , Stress, Mechanical
14.
J Prosthet Dent ; 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36528390

ABSTRACT

STATEMENT OF PROBLEM: Current designs of fiber-reinforced composite (FRC) resin-bonded fixed dental prostheses (RBFDPs) have a limited lifespan, failing mainly through veneer-fiber delamination, debonding, and fracture. PURPOSE: The purpose of this in vitro study was to validate a new inlay-retained 2-unit cantilevered RBFDP with an optimized cavity and fiber layout proposed in a previous study by using simulated occlusal loading. MATERIAL AND METHODS: Two groups of specimens (n=20), 1 with and 1 without glass fibers, were used to test the influence of the cavity design and that of the fiber layout on their load capacity, respectively. The specimens without fibers were directly cut from a resin-ceramic block by using a computer-aided manufacturing system, while those with fibers were manually fabricated with unidirectional glass fibers and composite resin in a silicone mold. The specimens with and without fibers were attached to abutments made of the same resin-ceramic with a cyanoacrylate-based adhesive and a resin-based dental cement, respectively. An increasing compressive load was applied on the mesial fossa of the premolar pontic until failure. Cracking in the specimens during loading was monitored with a 2-channel acoustic emission (AE) system. RESULTS: All the specimens without fiber reinforcement debonded from the abutments. Those using the optimized shovel-shaped cavity design had a mean ±standard deviation failure load (50.0 ±17.3 N) that was 193% higher than that of those with the conventional step-box design (17.1 ±6.2 N; P<.001). No significant difference was found between the groups for the mean number of AE events per specimen (step-box: 49 ±34 versus shovel-shaped: 63 ±34; P=.427), the mean amplitude of each event (58.4 ±1.3 dB versus 59.5 ±2.4 dB; P=.299), or the mean time to failure (283.2 ±122.3 seconds versus 297.5 ±66.7 seconds; P=.798). Between the groups of specimens with reinforcing fibers, the mean failure load of the conventional design was approximately half that of the optimized one. Again, no significant difference was found for the mean number of AE events per specimen (conventional: 28 ±18 versus optimized: 52 ±53; P=.248) or the mean amplitude for each AE event (64.9 ±4.2 dB versus 61.7 ±5.2 dB; P=.187). The connectors of 8 fiber-reinforced specimens with the conventional design fractured; the other 2 debonded from the abutments. Half of the shape-optimized fiber-reinforced specimens had fractured abutments, but the cantilevers remained intact, 4 specimens fractured at the connector, and only 1 debonded from its abutment. CONCLUSIONS: The shape-optimized 2-unit cantilevered FRC RBFDP had a higher load capacity than the conventional design.

15.
J Endod ; 48(11): 1414-1420.e1, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36100083

ABSTRACT

INTRODUCTION: Vertical root fracture (VRF) in root canal-treated (RCT) teeth is a common cause of pain, bone resorption, and tooth loss. VRF is also difficult to diagnose and measure. Magnetic resonance imaging (MRI) has the potential to identify VRF due to beneficial partial volume averaging, without using ionizing radiation. This investigation aimed to describe the narrowest VRFs detectable based on MRI, using micro-computed tomography (microCT) as the reference standard and proposes a method using profile integrals to measure the widths of small VRFs. METHODS: VRFs were induced in 62 RCT tooth root samples. All samples were imaged in a phantom using MRI and reference imaging was obtained using microCT. The stacks of 3-dimensional axial MRIs were assessed by 3 board-certified endodontists. Evaluators determined the most coronal slice within the stack that was discernible as the extent of the VRF. This slice was measured on correlated microCT sections to determine the minimum VRF width (µm) detectable using a profile integral-based method to measure small fractures and negate the effects of the point spread function. RESULTS: Using profile integrals to measure VRF width was repeatable and resulted in estimates that were on average 1 µm smaller than known reference widths. Adjusted median VRF width detected using MRI was 45 µm (first quartile: 26 µm, third quartile: 64 µm). CONCLUSION: Using profile integrals is a valid way to estimate small VRF width. The MRI approach demonstrated ability to repeatedly detect VRFs as small as 26 µm.


Subject(s)
Tooth Fractures , Tooth, Nonvital , Humans , Cone-Beam Computed Tomography , Tooth Fractures/diagnostic imaging , Tooth Fractures/pathology , Tooth Root/diagnostic imaging , Tooth Root/pathology , Magnetic Resonance Imaging , Root Canal Therapy , Tooth, Nonvital/diagnostic imaging
16.
Int Endod J ; 55(10): 1091-1102, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35833329

ABSTRACT

AIM: The use of high-concentration sodium hypochlorite (NaOCl) as an endodontic irrigant remains controversial because of its potential impact on the fracture strength of endodontically treated teeth. This study evaluated the effects of using different NaOCl concentrations, with 2-min-ethylenediaminetetraacetic acid (EDTA) as the final active irrigant, on the biomechanical and structural properties of root dentine. METHODOLOGY: A new test method, which is more clinically relevant, was utilized to calculate the fracture strength of root dentine. Bovine incisors were used to obtain root dentine discs. The root canals were enlarged to mean diameter of 2.90 mm with a taper of 0.06. The resulting discs were divided into five groups (n = 20) and treated with different concentrations of NaOCl (5.25%, 2.5%, and 1.3%) for 30 min plus 17% EDTA for 2 min. The discs were then loaded to fracture by a steel rod with the same taper through the central hole. The fractured specimens were examined by scanning electron microscopy to evaluate changes in the dimensions of the remaining intertubular dentine and the tubular radius. Micro-hardness was also measured with a Knoop diamond indenter along a radius to determine the depth of dentine eroded by the irrigation. Results were analysed by one-way anova and the Tukey test. The level of significance was set at α = 0.05. RESULTS: The damage by NaOCl increased with its concentration. 5.25% NaOCl greatly reduced the fracture strength of root dentine from 172.10 ± 30.13 MPa to 114.58 ± 26.74 MPa. The corresponding reduction in micro-hardness at the root canal wall was 34.1%. The damages reached a depth of up to 400 µm (p < .05). Structural changes involved the degradation of the intratubular wall leading to enlarged dentinal tubules and the loss of intertubular dentine. Changes in the microstructural parameters showed positive linear relationships with the fracture strength. CONCLUSIONS: With the adjunctive use of EDTA, NaOCl caused destruction to the intratubular surface near the root canal and, consequently, reduced the root dentine's mechanical strength. The higher the concentration of NaOCl, the greater the effect. Therefore, endodontists should avoid using overly high concentration of NaOCl for irrigation to prevent potential root fracture in endodontically treated teeth.


Subject(s)
Sodium Hypochlorite , Tooth, Nonvital , Animals , Cattle , Dental Pulp Cavity , Dentin , Edetic Acid/pharmacology , Humans , Root Canal Irrigants/pharmacology , Root Canal Preparation , Sodium Hypochlorite/pharmacology
17.
Int Endod J ; 55(5): 495-504, 2022 May.
Article in English | MEDLINE | ID: mdl-35152445

ABSTRACT

AIM: The aim of this study was to assess the efficacy of a non-instrumentation technique to disinfect root canals infected by a human dental plaque-derived multispecies biofilm. METHODOLOGY: Twenty-two mandibular incisors were accessed, autoclaved and inoculated with dental plaque. The Center for Disease Control biofilm reactor was used to promote contamination of the root canal space. In the conventional technique (control), the specimens were instrumented until size 35/04 and irrigated with 6% NaOCl. In the non-instrumentation technique, a glide path was established using K-files size 10-20 and specimens were immediately cleaned with the GentleWave System. Samples were obtained for culture and 16S rRNA gene sequencing. Differences in abundances of genera were evaluated using Kruskal-Wallis test, and differences in alpha diversity were compared using anova. Alpha and beta diversity indices were calculated using mothur. The Shannon and Chao1 indices were used to measure alpha diversity. The Bray-Curtis dissimilarity was used to measure beta diversity. Differences in community composition were evaluated using analysis of similarity with Bonferroni correction for multiple comparisons. RESULTS: The total numbers of reads in biological samples ranged from 126 to 45 286. Significantly fewer reads were obtained from samples following cleaning by either method (p < .0001), and significantly fewer reads were obtained in post-cleaning samples following conventional versus non-instrumentation cleaning regiment (p = .002). Communities in pre-treatment samples were similar in both groups; however, significantly greater relative abundances of Streptococcus, Veillonella and Campylobacter were observed following cleaning using non-instrumentation technique (Kruskal-Wallis p = .009, .033, and .001, respectively). Whilst no significant differences were observed in Shannon alpha diversity, the Chao1 index was significantly lower in post-cleaning samples. CONCLUSIONS: Significant shifts in composition were observed following cleaning by using both regimens, but the impact of this change was greater following a conventional cleaning technique.


Subject(s)
Dental Plaque , Root Canal Irrigants , Biofilms , Dental Pulp Cavity , Humans , RNA, Ribosomal, 16S , Root Canal Preparation
18.
J Prosthet Dent ; 127(6): 882-889, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33472752

ABSTRACT

STATEMENT OF PROBLEM: The mechanical behavior of the conical connection implant with different torque levels requires evaluation. PURPOSE: The purpose of this finite element analysis study was to investigate the impact of abutment screw torque on the formation of microgaps at the implant-to-abutment interface of a conical connection under oblique loading. This is important because it is thought that bacteria can invade the internal implant space through the abutment-implant microgaps, causing peri-implantitis. MATERIAL AND METHODS: Three-dimensional finite element analyses of the conical implant-abutment connection were performed by using screw torques of 20 Ncm and 30 Ncm. Oblique loads from 10 N to 280 N were applied to the prosthesis placed on the implant. The maximum von Mises stress in the abutment screw, the microgap formation process, and the critical load for bridging the internal implant space were evaluated. RESULTS: The stresses in the abutment screw under oblique loading had limited sensitivity to the screw torque. However, the residual stress in the screw with a 30-Ncm torque was 35% higher than that with a 20-Ncm torque in the absence of an external load. The area in contact at the implant-to-abutment interface decreased with increasing load for both torque values. The critical load for bridging the internal implant space was 160 N for a screw torque of 20 Ncm and 220 N for a screw torque of 30 Ncm. The maximum gap size was approximately 470 µm with all the loads. CONCLUSIONS: Increasing the screw torque can reduce the formation of microgaps at the implant-to-abutment interface. However, this will result in higher mean stress in the abutment screw, which may reduce its fatigue life and consequently that of the prosthesis. Further research is needed to evaluate the relationship between the abutment screw torque and microleakage in implant-supported restorations.


Subject(s)
Dental Abutments , Dental Implants , Bone Screws , Dental Implant-Abutment Design , Dental Stress Analysis/methods , Finite Element Analysis , Stress, Mechanical , Torque
19.
Dent Mater ; 38(1): 204-213, 2022 01.
Article in English | MEDLINE | ID: mdl-34949478

ABSTRACT

OBJECTIVE: To investigate the fatigue behavior of restored teeth, in particular the mechanisms of longitudinal dentinal cracking under cyclic mechanical loading, using finite element analysis (FEA) and the stress-life (S-N) approach. METHODS: Ten root-filled premolars restored with resin composites were subjected to step-stress cyclic loading to produce longitudinal cracks. Fracture loads and number of cycles completed at each load level were recorded. FEA was used to predict the stress amplitude of each component under the global cyclic load. Both intact and debonded conditions were considered for the dentin-composite interface in the FEA. The predicted stress concentrations were compared with the fracture patterns to help elucidate the failure mechanisms. The S-N approach was further used to predict the lifetimes of the different components in the restored teeth. Cumulative fatigue damage was represented by the sum of the fractions of life spent under the different stress amplitudes. RESULTS: Longitudinal cracks were seen in ~50% of the samples with a mean fracture load of 770 ± 45 N and a mean number of cycles to failure of 32,297 ± 12,624. The longitudinal dentinal cracks seemed to start near the line angle of the cavity, and propagated longitudinally towards the root. The sum of fractions of life spent for the dentin-composite interface exceeded 1 after ~7000 cycles when that for dentin was much lower than 1, indicating that interfacial debonding would occur prior to dentin fracture. This was supported by micro-CT images showing widened interfacial space in the cracked samples. In the debonded tooth, FEA showed dentinal stress concentrations at the gingival wall of the cavity, which coincided with the longitudinal cracks found in the cyclic loading test. The sum of fractions of life spent for dentin was close to 1 at ~30,000 cycles, similar to the experimental value. SIGNIFICANCE: Debonding of the dentin-composite interface may occur prior to longitudinal cracking of dentin in root-filled teeth under cyclic loading. The approximate time of occurrence for these events could be estimated using fatigue analysis with stresses provided by FEA. This methodology can therefore be used to evaluate the longevity of restoration designs for root-filled teeth.


Subject(s)
Tooth Fractures , Bicuspid , Composite Resins , Dental Restoration, Permanent , Dental Stress Analysis , Humans , Stress, Mechanical
20.
Dent Mater ; 38(2): 242-250, 2022 02.
Article in English | MEDLINE | ID: mdl-34930622

ABSTRACT

OBJECTIVE: To study the mechanical behavior of endodontically-treated teeth with minimally invasive endodontic access cavities and resin composite restorations under different bonding conditions using finite element analysis (FEA). METHODS: Four Class-II endodontic access cavities including the mesio-occlusal minimally-invasive (MO-MIE), mesio-occlusal conventional (MO-CONV), disto-occlusal minimally-invasive (DO-MIE), and disto-occlusal conventional (DO-CONV) cavities were prepared in 3D-printed maxillary first molars. Each tooth was subjected to root canal preparation and scanned using micro-CT to provide a 3D structural model which was virtually restored with resin composite. An intact 3D-printed molar was used as control. FEA was conducted under a 250-N vertical load. Three different interfacial bonding conditions between dentin/enamel and resin composite were considered, i.e. fully bonded, partially debonded, and fully debonded. The maximum principal stress of dentin and the normal tensile stress at the interfaces were recorded. The risk factor of failure for each component was then calculated. RESULTS: In the fully-bonded tooth, the dentin-composite interface showed significantly higher stress and a higher risk factor than dentin, indicating that debonding at the dentin-composite interface would occur prior to dentin fracture. With the dentin-composite interface debonded, the enamel-composite interface exhibited higher stress and a higher risk factor than dentin, indicating that debonding at the enamel-composite interface would occur next, also prior to dentin fracture. With the resin composite fully debonded from the tooth, stress in dentin increased significantly. Irrespective of the bonding status, the CONV groups exhibited higher median stresses in dentin than the MIE groups. SIGNIFICANCE: Within the limitation of this study, it was shown that debonding of the resin composite restoration increased the stress in dentin and hence the risk of dentin fracture in endodontically-restored teeth. Minimally-invasive access cavities could better safeguard the fracture resistance of interproximally-restored teeth compared to conventional ones.


Subject(s)
Tooth Fractures , Tooth, Nonvital , Composite Resins/chemistry , Dental Cavity Preparation , Dental Restoration, Permanent , Dental Stress Analysis , Finite Element Analysis , Humans , Molar , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...