Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nutrients ; 15(22)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38004232

ABSTRACT

Caloric restriction (CR) induces weight loss, but is associated with rapid weight regain upon return to ad libitum feeding. Our aim was to investigate effects of the macronutrient composition of the diet on weight loss and regain in elderly mice. Males, 18 months old, of the C57BL/6J strain were subjected to 4-week 30% CR followed by 4 weeks of ad libitum refeeding on either high-carb (HC), high-fat (HF) or high-protein (HP) diets (n = 22 each). Mice (n = 11) fed a chow diet ad libitum served as a control group (CON). Body mass and food intake were monitored daily. Twenty-four-hour indirect calorimetry was used to assess energy expenditure and substrate oxidation. Muscle and fat mass were evaluated with dissection of the tissues. Serum leptin and ghrelin levels were also measured. CR-induced weight loss did not differ between the diets. Weight regain was particularly fast for HF as mice overshot their initial weight by 12.8 ± 5.7% after 4-week refeeding when HC and HP mice reached the weight of the CON group. Weight regain strongly correlated with energy intake across the groups. The respiratory exchange ratio was lower in HF mice (0.81 ± 0.03) compared to HC (0.94 ± 0.06, p < 0.001), HP (0.89 ± 0.04, p < 0.001) and CON mice (0.91 ± 0.06, p < 0.01) during the refeeding. Serum leptin levels were higher in HF mice (1.03 ± 0.50 ng/mL) compared to HC (0.46 ± 0.14, p < 0.001), HP (0.63 ± 0.28, p < 0.05) or CON mice (0.41 ± 0.14, p < 0.001). Thus, CR induces similar weight loss in aging mice irrespective of the diet's macronutrient composition. An HF diet leads to excessive energy intake and pronounced gain in body fat in spite of increased fat oxidation and serum leptin during the refeeding after CR.


Subject(s)
Caloric Restriction , Leptin , Humans , Male , Mice , Animals , Infant , Mice, Inbred C57BL , Weight Loss , Energy Intake , Nutrients , Diet, High-Fat , Weight Gain , Body Weight
2.
Nutrients ; 13(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34578880

ABSTRACT

Caloric restriction (CR) is of key importance in combating obesity and its associated diseases. We aimed to examine effects of dietary macronutrient distribution on weight loss and metabolic health in obese mice exposed to CR. Male C57BL/6J mice underwent diet-induced obesity for 18 weeks. Thereafter mice were exposed to a 6-week CR for up to 40% on either low-fat diet (LFD; 20, 60, 20% kcal from protein, carbohydrate, fat), low-carb diet (LCD; 20, 20, 60% kcal, respectively) or high-pro diet (HPD; 35, 35, 30% kcal, respectively) (n = 16 each). Ten mice on the obesogenic diet served as age-matched controls. Body composition was evaluated by tissue dissections. Glucose tolerance, bloods lipids and energy metabolism were measured. CR-induced weight loss was similar for LFD and LCD while HPD was associated with a greater weight loss than LCD. The diet groups did not differ from obese controls in hindlimb muscle mass, but showed a substantial decrease in body fat without differences between them. Glucose tolerance and blood total cholesterol were weight-loss dependent and mostly improved in LFD and HPD groups during CR. Blood triacylglycerol was lowered only in LCD group compared to obese controls. Thus, CR rather than macronutrient distribution in the diet plays the major role for improvements in body composition and glucose control in obese mice. Low-carbohydrate-high-fat diet more successfully reduces triacylglycerol but not cholesterol levels compared to isocaloric high-carbohydrate-low-fat weight loss diets.


Subject(s)
Adipose Tissue/metabolism , Blood Glucose/metabolism , Body Composition , Caloric Restriction , Diet , Nutrients/administration & dosage , Obesity/therapy , Animals , Cholesterol/blood , Diet, Carbohydrate-Restricted , Diet, Fat-Restricted , Diet, High-Fat , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Energy Metabolism , Glucose Intolerance/prevention & control , Male , Mice, Inbred C57BL , Mice, Obese , Muscles/metabolism , Triglycerides/blood , Weight Loss
3.
Sci Rep ; 11(1): 1260, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441954

ABSTRACT

Methionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


Subject(s)
Aging/metabolism , Diet, High-Fat/adverse effects , Methionine/deficiency , Muscle, Skeletal/metabolism , Obesity/metabolism , Physical Conditioning, Animal , Animals , Male , Mice , Muscle, Skeletal/pathology , Obesity/chemically induced
4.
Obesity (Silver Spring) ; 28(8): 1494-1502, 2020 08.
Article in English | MEDLINE | ID: mdl-32639096

ABSTRACT

OBJECTIVE: It is controversial whether low-carbohydrate diets are better suited for weight control and metabolic health than high-carbohydrate diets. This study examined whether these diets induce different improvements in body composition and glucose tolerance in obese mice during caloric restriction (CR). METHODS: Male C57BL/6J mice were fed an obesogenic diet ad libitum for 18 weeks and then subjected to 6-week progressive CR of up to 40%, using either a low-fat or low-carbohydrate diet with equal protein content. Mice fed a regular chow diet ad libitum served as controls. Body mass, hindlimb muscle mass, fat mass, energy expenditure, and glucose tolerance were compared between the groups. RESULTS: Initially low-fat and low-carbohydrate groups had similar body mass, which was 30% greater compared with controls. CR induced similar weight loss in low-fat and low-carbohydrate groups. This weight loss was mainly due to fat loss in both groups. Energy expenditure of freely moving mice did not differ between the groups. Glucose tolerance improved compared with the values before CR and in controls but did not differ between the diets. CONCLUSIONS: Dietary carbohydrate or fat content does not affect improvements in body composition and metabolic health in obese mice exposed to CR with fixed energy and protein intake.


Subject(s)
Caloric Restriction/methods , Diet, Carbohydrate-Restricted/methods , Diet, Fat-Restricted/methods , Obesity/therapy , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese
5.
J Musculoskelet Neuronal Interact ; 19(3): 342-353, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31475942

ABSTRACT

OBJECTIVES: The aim of the study was to investigate if myostatin dysfunction can ameliorate fasting-induced muscle wasting. METHODS: 18-week old males from Berlin high (BEH) strain with myostatin dysfunction and wild type myostatin (BEH+/+) strain were subjected to 48-h food deprivation (FD). Changes in body composition as well as contractile properties of soleus (SOL) and extensor digitorum longus (EDL) muscles were studied. RESULTS: BEH mice were heavier than BEH+/+ mice (56.0±2.5 vs. 49.9±2.8 g, P<0.001, respectively). FD induced similar loss of body mass in BEH and BEH+/+ mice (16.6±2.4 vs. 17.4±2.2%, P>0.05), but only BEH mice experienced wasting of the gastrocnemius, tibialis anterior and plantaris muscles. FD induced a marked decrease in specific muscle force of SOL. EDL of BEH mice tended to be protected from this decline. CONCLUSION: Myostatin dysfunction does not protect from loss of muscle mass during fasting.


Subject(s)
Fasting/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myostatin/metabolism , Animals , Fasting/adverse effects , Male , Mice , Mice, Mutant Strains , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology
6.
Int J Prev Med ; 10: 29, 2019.
Article in English | MEDLINE | ID: mdl-30967915

ABSTRACT

BACKGROUND: Sarcopenia describes the inevitable deterioration in muscle mass and strength that accompanies biological aging. The purpose of this study was to investigate the effects of resistance training (RT) on quadriceps hypertrophy and related biochemistry in sarcopenic and healthy elderly men. METHODS: A total of 31 elderly men (55-70 years old) were classified as sarcopenic and nonsarcopenic and were divided into two groups. Both groups participated in a progressive RT program for 8 weeks. RESULTS: Data indicated that the strength in the sarcopenic group increased more than the healthy group (P < 0.05). Quadriceps cross-sectional area also increased more in the healthy group (P < 0.05). Myostatin concentration decreased in both groups after training (P < 0.05). Follistatin and testosterone increased in the healthy group; in contrast, only testosterone increased in the sarcopenic group after training (P < 0.05). CONCLUSIONS: The findings from this study suggest that RT improves muscle cross-sectional area and biomarker-related muscle loss in both healthy and sarcopenic elderly men. The findings also demonstrate that growth factor profiles at baseline and changes in testosterone levels play an important role in muscle hypertrophy observed in both groups.

7.
J Control Release ; 256: 101-113, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28456678

ABSTRACT

Many muscular dystrophies, including lethal Duchenne muscular dystrophy, are incurable and require the sustained application of drugs that have only minor treatment effects and serious negative side effects. The mechanism of siRNA-mediated transcriptional gene regulation (TGR) appears to have a long-lasting effect and may be a viable solution to treat muscle disorders because single or at least rarely repeated therapies would be used. For the best results, siRNA should be delivered to all disease affected muscles, and systemic delivery of siRNA through blood vessels is probably the only applicable choice to achieve this goal. Unfortunately, there are many challenges to overcome such as siRNA degradation in blood, renal clearance, blood-muscle barrier, cell entry and endosomal escape. By exploiting and considering the unique features of muscles and the mechanism of TGR, we will discuss the possible ways to induce TGR in muscles by using non-viral systemic siRNA delivery methods.


Subject(s)
Gene Expression Regulation , Muscle Cells/metabolism , RNA, Small Interfering/administration & dosage , Animals , Biological Transport , Cell Nucleus/metabolism , Humans , RNA, Small Interfering/blood , RNA, Small Interfering/pharmacokinetics
8.
Front Physiol ; 8: 9, 2017.
Article in English | MEDLINE | ID: mdl-28167917

ABSTRACT

Phenotypic diversity between laboratory mouse strains provides a model for studying the underlying genetic mechanisms. The A/J strain performs poorly in various endurance exercise models. The aim of the study was to test if endurance capacity and contractility of the fast- and slow-twitch muscles are affected by the genes on mouse chromosome 10. The C57BL/6J (B6) strain and C57BL/6J-Chr 10A/J/NaJ (B6.A10) consomic strain which carries the A/J chromosome 10 on a B6 strain background were compared. The B6.A10 mice compared to B6 were larger in body weight (p < 0.02): 27.2 ± 1.9 vs. 23.8 ± 2.7 and 23.4 ± 1.9 vs. 22.9 ± 2.3 g, for males and females, respectively, and in male soleus weight (p < 0.02): 9.7 ± 0.4 vs. 8.6 ± 0.9 mg. In the forced running test the B6.A10 mice completed only 64% of the B6 covered distance (p < 0.0001). However, there was no difference in voluntary wheel running (p = 0.6) or in fatigability of isolated soleus (p = 0.24) or extensor digitorum longus (EDL, p = 0.7) muscles. We conclude that chromosome 10 of the A/J strain contributes to reduced endurance performance. We also discuss physiological mechanisms and methodological aspects relevant to interpretation of these findings.

9.
Appl Physiol Nutr Metab ; 40(8): 817-21, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26201857

ABSTRACT

Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.


Subject(s)
Creatine Kinase/metabolism , Motor Activity/physiology , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Myostatin/deficiency , Animals , Female , Mice
10.
J Sports Sci Med ; 14(2): 379-85, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25983588

ABSTRACT

Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05) after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h(-1), respectively), but smaller (p < 0.05) than for young females after the same type of exercise (1069 ± 341 mU·h(-1)). Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h(-1), respectively, p < 0.001). Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice. Key pointsMuscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches.Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity.Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice.

11.
Appl Physiol Nutr Metab ; 40(2): 129-33, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25565131

ABSTRACT

Regenerated skeletal muscles show less muscle damage after strenuous muscle exercise. The aim of the studies was to investigate if the regeneration is associated with reduced muscle creatine kinase (CK) efflux immediately after the exercise. Cryolesion was applied to the soleus muscle of 3-month-old C57BL/6J male mice. Then total CK efflux was assessed in vitro in the regenerated muscles without exercise or after 100 eccentric contractions. The same measurements were performed in the control muscles, which were not exposed to cryolesion. Regenerated muscles generated weaker (P < 0.05) twitches, but stronger (P < 0.05) 150-Hz and 300-Hz tetani with prolonged (P < 0.01) contraction times compared with the control muscles. There was no difference between regenerated and control muscles in the total CK efflux without exercise, but only control muscles showed an increase (P < 0.001) in the CK efflux after the exercise. Our results suggest that muscle regeneration is associated with modulation of contractile properties and improvement in muscle resistance to damage after eccentric exercise.


Subject(s)
Creatine Kinase/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Regeneration/physiology , Animals , In Vitro Techniques , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...