Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Amino Acids ; 56(1): 42, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869518

ABSTRACT

Creatine is a natural nitrogenous organic acid that is integral to energy metabolism and crucial for proper cell functioning. The kidneys are involved in the first step of creatine production. With kidney transplantation being the gold-standard treatment for end-stage kidney disease, kidney transplant recipients (KTR) may be at risk of impaired creatine synthesis. We aimed to compare creatine homeostasis between KTR and controls. Plasma and urine concentrations of arginine, glycine, guanidinoacetate, creatine and creatinine were measured in 553 KTR and 168 healthy controls. Creatine intake was assessed using food frequency questionnaires. Iothalamate-measured GFR data were available in subsets of 157 KTR and 167 controls. KTR and controls had comparable body weight, height and creatine intake (all P > 0.05). However, the total creatine pool was 14% lower in KTR as compared to controls (651 ± 178 vs. 753 ± 239 mmol, P < 0.001). The endogenous creatine synthesis rate was 22% lower in KTR as compared to controls (7.8 ± 3.0 vs. 10.0 ± 4.1 mmol per day, P < 0.001). Despite lower GFR, the plasma guanidinoacetate and creatine concentrations were 21% and 41% lower in KTR as compared to controls (both P < 0.001). Urinary excretion of guanidinoacetate and creatine were 66% and 59% lower in KTR as compared to controls (both P < 0.001). In KTR, but not in controls, a higher measured GFR was associated with a higher endogenous creatine synthesis rate (std. beta: 0.21, 95% CI: 0.08; 0.33; P = 0.002), as well as a higher total creatine pool (std. beta: 0.22, 95% CI: 0.11; 0.33; P < 0.001). These associations were fully mediated (93% and 95%; P < 0.001) by urinary guanidinoacetate excretion which is consistent with production of the creatine precursor guanidinoacetate as rate-limiting factor. Our findings highlight that KTR have a disturbed creatine homeostasis as compared to controls. Given the direct relationship of measured GFR with endogenous creatine synthesis rate and the total creatine pool, creatine supplementation might be beneficial in KTR with low kidney function.Trial registration ID: NCT02811835.Trial registration URL: https://clinicaltrials.gov/ct2/show/NCT02811835 .


Subject(s)
Creatine , Homeostasis , Kidney Transplantation , Kidney , Humans , Creatine/urine , Creatine/metabolism , Male , Female , Middle Aged , Adult , Kidney/metabolism , Glycine/analogs & derivatives , Glycine/urine , Glycine/metabolism , Glycine/blood , Glomerular Filtration Rate , Transplant Recipients , Case-Control Studies , Creatinine/urine , Creatinine/blood
2.
Int J Neonatal Screen ; 10(1)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535124

ABSTRACT

In this study, we compare next-generation sequencing (NGS) approaches (targeted panel (tNGS), whole exome sequencing (WES), and whole genome sequencing (WGS)) for application in newborn screening (NBS). DNA was extracted from dried blood spots (DBS) from 50 patients with genetically confirmed inherited metabolic disorders (IMDs) and 50 control samples. One hundred IMD-related genes were analyzed. Two data-filtering strategies were applied: one to detect only (likely) pathogenic ((L)P) variants, and one to detect (L)P variants in combination with variants of unknown significance (VUS). The variants were filtered and interpreted, defining true/false positives (TP/FP) and true/false negatives (TN/FN). The variant filtering strategies were assessed in a background cohort (BC) of 4833 individuals. Reliable results were obtained within 5 days. TP results (47 patient samples) for tNGS, WES, and WGS results were 33, 31, and 30, respectively, using the (L)P filtering, and 40, 40, and 38, respectively, when including VUS. FN results were 11, 13, and 14, respectively, excluding VUS, and 4, 4, and 6, when including VUS. The remaining FN were mainly samples with a homozygous VUS. All controls were TN. Three BC individuals showed a homozygous (L)P variant, all related to a variable, mild phenotype. The use of NGS-based workflows in NBS seems promising, although more knowledge of data handling, automated variant interpretation, and costs is needed before implementation.

3.
Mol Genet Metab ; 142(1): 108361, 2024 May.
Article in English | MEDLINE | ID: mdl-38442492

ABSTRACT

INTRODUCTION: Phenylketonuria (PKU) requires regular phenylalanine monitoring to ensure optimal outcome. However, home sampling methods used for monitoring suffer high pre-analytical variability, inter-laboratory variability and turn-around-times, highlighting the need for alternative methods of home sampling or monitoring. METHODS: A survey was distributed through email and social media to (parents of) PKU patients and professionals working in inherited metabolic diseases in Denmark, The Netherlands, and United Kingdom regarding satisfaction with current home sampling methods and expectations for future point-of-care testing (POCT). RESULTS: 210 parents, 156 patients and 95 professionals completed the survey. Countries, and parents and patients were analysed together, in absence of significant group differences for most questions. Important results are: 1) Many patients take less home samples than advised. 2) The majority of (parents of) PKU patients are (somewhat) dissatisfied with their home sampling method, especially with turn-around-times (3-5 days). 3) 37% of professionals are dissatisfied with their home sampling method and 45% with the turn-around-times. 4) All responders are positive towards developments for POCT: 97% (n = 332) of (parents of) patients is willing to use a POC-device and 76% (n = 61) of professionals would recommend their patients to use a POC-device. 5) Concerns from all participants for future POC-devices are costs/reimbursements and accuracy, and to professionals specifically, accessibility to results, over-testing, patient anxiety, and patients adjusting their diet without consultation. CONCLUSION: The PKU community is (somewhat) dissatisfied with current home sampling methods, highlighting the need for alternatives of Phe monitoring. POCT might be such an alternative and the community is eager for its arrival.


Subject(s)
Parents , Phenylketonurias , Point-of-Care Testing , Humans , Phenylketonurias/diagnosis , Phenylketonurias/blood , Male , Female , Surveys and Questionnaires , Parents/psychology , Blood Specimen Collection , United Kingdom , Netherlands , Adult , Patient Satisfaction , Phenylalanine/blood , Denmark , Child , Adolescent
4.
J Inherit Metab Dis ; 47(4): 624-635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38556470

ABSTRACT

Recent studies in PKU patients identified alternative biomarkers in blood using untargeted metabolomics. To test the added clinical value of these novel biomarkers, targeted metabolomics of 11 PKU biomarkers (phenylalanine, glutamyl-phenylalanine, glutamyl-glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, the dipeptides phenylalanyl-phenylalanine and phenylalanyl-leucine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate) was performed in stored serum samples of the well-defined PKU patient-COBESO cohort and a healthy control group. Serum samples of 35 PKU adults and 20 healthy age- and sex-matched controls were analyzed using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Group differences were tested using the Mann-Whitney U test. Multiple linear regression analyses were performed with these biomarkers as predictors of (neuro-)cognitive functions working memory, sustained attention, inhibitory control, and mental health. Compared to healthy controls, phenylalanine, glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate were significant elevated in PKU adults (p < 0.001). The remaining three were below limit of detection in PKU and controls. Both phenylalanine and N-lactoyl-phenylalanine were associated with DSM-VI Attention deficit/hyperactivity (R2 = 0.195, p = 0.039 and R2 = 0.335, p = 0.002, respectively) of the ASR questionnaire. In addition, N-lactoyl-phenylalanine showed significant associations with ASR DSM-VI avoidant personality (R2 = 0.265, p = 0.010), internalizing (R2 = 0.192, p = 0.046) and externalizing problems (R2 = 0.217, p = 0.029) of the ASR questionnaire and multiple aspects of the MS2D and FI tests, reflecting working memory with R2 between 0.178 (p = 0.048) and 0.204 (p = 0.033). Even though the strength of the models was not considered strong, N-lactoyl-phenylalanine outperformed phenylalanine in its association with working memory and mental health outcomes.


Subject(s)
Biomarkers , Phenylalanine , Phenylketonurias , Humans , Phenylketonurias/blood , Biomarkers/blood , Adult , Male , Female , Young Adult , Case-Control Studies , Phenylalanine/blood , Metabolomics/methods , Chromatography, High Pressure Liquid , Clinical Relevance
5.
Eur J Nutr ; 63(2): 435-443, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37985508

ABSTRACT

PURPOSE: We investigated the associations of socioeconomic position (SEP) with total and type of fish intake in a large general population and validated whether types of fish intake were differently associated with plasma EPA and DHA in a subset of the population. METHODS: From the Lifelines Cohort Study, 94,246 participants aged 44 ± 13 years old were included to test the association of two SEP indicators, i.e., education level and household income level, with dietary intakes of total, oily, lean, fried, and other types of fish. In a subset of 575 participants (mean age: 50 ± 13 years), EPA and DHA levels were measured in plasma phospholipids and triglycerides. Dietary fish intake was assessed using Food Frequency Questionnaire. Linear regressions were applied and adjusted for relevant covariates. RESULTS: Compared to the high education level, lower education levels were negatively associated with total, oily, lean, and other fish intake (p < 0.001 for all), and positively associated with fried fish intake (ß (SE): 0.04 (0.04), p < 0.001 for middle education; 0.07 (0.04), p < 0.001 for low education), independently of relevant covariates. Similar results were observed for income levels. In the subset population, total and oily fish intakes were positively associated with plasma EPA and DHA (p < 0.02 for all). Lean and other fish intakes were positively associated with only DHA (p < 0.008 for all), but not EPA, while fried fish was not associated with either EPA or DHA in plasma (p > 0.1 for all). CONCLUSION: Lower SEP was associated with a lower total intake of fish, and of oily and lean fish, but with higher intake of fried fish. Fried fish was not associated with the fish-based EPA and DHA in plasma. Hence, SEP-related differences in fish consumption are both quantitative and qualitative.


Subject(s)
Fatty Acids, Omega-3 , Animals , Humans , Adult , Middle Aged , Cross-Sectional Studies , Cohort Studies , Diet , Fishes , Educational Status , Docosahexaenoic Acids , Eicosapentaenoic Acid
6.
Int J Neonatal Screen ; 9(4)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38132825

ABSTRACT

Undiagnosed and untreated tyrosinemia type 1 (TT1) individuals carry a significant risk for developing liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Elevated succinylacetone (SA) is pathognomonic for TT1 and therefore often used as marker for TT1 newborn screening (NBS). While SA was long considered to be elevated in every TT1 patient, here we present a recent false-negative SA TT1 screen. A nine-year-old boy presented with HCC in a cirrhotic liver. Additional tests for the underlying cause unexpectedly revealed TT1. Nine years prior, the patient was screened for TT1 via SA NBS with a negative result: SA 1.08 µmol/L, NBS cut-off 1.20 µmol/L. To our knowledge, this report is the first to describe a false-negative result from the TT1 NBS using SA. False-negative TT1 NBS results may be caused by milder TT1 variants with lower SA excretion. Such patients are more likely to be missed in NBS programs and can be asymptomatic for years. Based on our case, we advise TT1 to be considered in patients with otherwise unexplained liver pathology, including fibrosis, cirrhosis and HCC, despite a previous negative TT1 NBS status. Moreover, because the NBS SA concentration of this patient fell below the Dutch cut-off value (1.20 µmol/L at that time), as well as below the range of cut-off values used in other countries (1.29-10 µmol/L), it is likely that false-negative screening results for TT1 may also be occurring internationally. This underscores the need to re-evaluate TT1 SA NBS programs.

7.
Int J Neonatal Screen ; 9(4)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37873847

ABSTRACT

The Wilson and Jungner (W&J) and Andermann criteria are meant to help select diseases eligible for population-based screening. With the introduction of next-generation sequencing (NGS) methods for newborn screening (NBS), more inherited metabolic diseases (IMDs) can technically be included, and a revision of the criteria was attempted. This study aimed to formulate statements and investigate whether those statements could elaborate on the criterion of treatability for IMDs to decide on eligibility for NBS. An online Delphi study was started among a panel of Dutch IMD experts (EPs). EPs evaluated, amended, and approved statements on treatability that were subsequently applied to 10 IMDs. After two rounds of Delphi, consensus was reached on 10 statements. Application of these statements selected 5 out of 10 IMDs proposed for this study as eligible for NBS, including 3 IMDs in the current Dutch NBS. The statement: 'The expected benefit/burden ratio of early treatment is positive and results in a significant health outcome' contributed most to decision-making. Our Delphi study resulted in 10 statements that can help to decide on eligibility for inclusion in NBS based on treatability, also showing that other criteria could be handled in a comparable way. Validation of the statements is required before these can be applied as guidance to authorities.

8.
J Inherit Metab Dis ; 46(6): 1104-1113, 2023 11.
Article in English | MEDLINE | ID: mdl-37545091

ABSTRACT

Dried blood spot succinylacetone (SA) is often used as a biomarker for newborn screening (NBS) for tyrosinemia type 1 (TT1). However, false-positive SA results are often observed. Elevated SA may also be due to maleylacetoacetate isomerase deficiency (MAAI-D), which appears to be clinically insignificant. This study investigated whether urine organic acid (uOA) and quantitative urine maleic acid (Q-uMA) analyses can distinguish between TT1 and MAAI-D. We reevaluated/measured uOA (GC-MS) and/or Q-uMA (LC-MS/MS) in available urine samples of nine referred newborns (2 TT1, 7 false-positive), eight genetically confirmed MAAI-D children, and 66 controls. Maleic acid was elevated in uOA of 5/7 false-positive newborns and in the three available samples of confirmed MAAI-D children, but not in TT1 patients. Q-uMA ranged from not detectable to 1.16 mmol/mol creatinine in controls (n = 66) and from 0.95 to 192.06 mmol/mol creatinine in false-positive newborns and MAAI-D children (n = 10). MAAI-D was genetically confirmed in 4/7 false-positive newborns, all with elevated Q-uMA, and rejected in the two newborns with normal Q-uMA. No sample was available for genetic analysis of the last false-positive infant with elevated Q-uMA. Our study shows that MAAI-D is a recognizable cause of false-positive TT1 NBS results. Elevated urine maleic acid excretion seems highly effective in discriminating MAAI-D from TT1.


Subject(s)
Tyrosinemias , Humans , Infant, Newborn , Biomarkers , Chromatography, Liquid , Creatinine , Neonatal Screening/methods , Tandem Mass Spectrometry , Tyrosinemias/diagnosis
9.
Int J Neonatal Screen ; 9(3)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37489487

ABSTRACT

Residual heel prick Dried Blood Spots (DBS) are valuable samples for retrospective investigation of inborn metabolic diseases (IMD) and biomarker analyses. Because many metabolites suffer time-dependent decay, we investigated the five-year stability of amino acids (AA) in residual heel prick DBS. In 2019/2020, we analyzed 23 AAs in 2170 residual heel prick DBS from the Dutch neonatal screening program, stored from 2013-2017 (one year at +4 °C and four years at room temperature), using liquid chromatography mass-spectrometry. Stability was assessed by AA changes over the five years. Hydroxyproline could not be measured accurately and was not further assessed. Concentrations of 19 out of the remaining 22 AAs degraded significantly, ranked from most to least stable: aspartate, isoleucine, proline, valine, leucine, tyrosine, alanine, phenylalanine, threonine, citrulline, glutamate, serine, ornithine, glycine, asparagine, lysine, taurine, tryptophan and glutamine. Arginine, histidine and methionine concentrations were below the limit of detection and were likely to have been degraded within the first year of storage. AAs in residual heel prick DBS stored at room temperature are subject to substantial degradation, which may cause incorrect interpretation of test results for retrospective biomarker studies and IMD diagnostics. Therefore, retrospective analysis of heel prick blood should be done in comparison to similarly stored heel prick blood from controls.

10.
JIMD Rep ; 64(1): 57-64, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36636597

ABSTRACT

In the Netherlands, newborns are referred by the newborn screening (NBS) Program when a low free carnitine (C0) concentration (<5 µmol/l) is detected in their NBS dried blood spot. This leads to ~85% false positive referrals who all need an invasive, expensive and lengthy evaluation. We investigated whether a ratio of urine C0 / plasma C0 (RatioU:P) can improve the follow-up protocol for primary carnitine deficiency (PCD). A retrospective study was performed in all Dutch metabolic centres, using samples from newborns and mothers referred by NBS due to low C0 concentration. Samples were included when C0 excretion and plasma C0 concentration were sampled on the same day. RatioU:P was calculated as (urine C0 [µmol/mmol creatinine])/(plasma C0 [µmol/l]). Data were available for 59 patients with genetically confirmed PCD and 68 individuals without PCD. The RatioU:P in PCD patients was significantly higher (p value < 0.001) than in those without PCD, median [IQR], respectively: 3.4 [1.2-9.5], 0.4 [0.3-0.8], area under the curve (AUC) 0.837. Classified for age (up to 1 month) and without carnitine suppletion (PCD; N = 12, Non-PCD; N = 40), medians were 6.20 [4.4-8.8] and 0.37 [0.24-0.56], respectively. The AUC for RatioU:P was 0.996 with a cut-off required for 100% sensitivity at 1.7 (yielding one false positive case). RatioU:P accurately discriminates between positive and false positive newborn referrals for PCD by NBS. RatioU:P is less effective as a discriminative tool for PCD in adults and for individuals that receive carnitine suppletion.

11.
Sci Transl Med ; 14(660): eabn7566, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36044594

ABSTRACT

Organ transplantation is a life-saving treatment for patients with end-stage disease, but survival rates after transplantation vary considerably. There is now increasing evidence that the gut microbiome is linked to the survival of patients undergoing hematopoietic cell transplant, yet little is known about the role of the gut microbiome in solid organ transplantation. We analyzed 1370 fecal samples from 415 liver and 672 renal transplant recipients using shotgun metagenomic sequencing to assess microbial taxonomy, metabolic pathways, antibiotic resistance genes, and virulence factors. To quantify taxonomic and metabolic dysbiosis, we also analyzed 1183 age-, sex-, and body mass index-matched controls from the same population. In addition, a subset of 78 renal transplant recipients was followed longitudinally from pretransplantation to 24 months after transplantation. Our data showed that both liver and kidney transplant recipients suffered from gut dysbiosis, including lower microbial diversity, increased abundance of unhealthy microbial species, decreased abundance of important metabolic pathways, and increased prevalence and diversity of antibiotic resistance genes and virulence factors. These changes were found to persist up to 20 years after transplantation. Last, we demonstrated that the use of immunosuppressive drugs was associated with the observed dysbiosis and that the extent of dysbiosis was associated with increased mortality after transplantation. This study represents a step toward potential microbiome-targeted interventions that might influence the outcomes of recipients of solid organ transplantation.


Subject(s)
Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Organ Transplantation , Dysbiosis , Gastrointestinal Microbiome/genetics , Humans , Virulence Factors
12.
Blood ; 140(19): 2037-2052, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35984907

ABSTRACT

Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.


Subject(s)
Leukemia, Myeloid, Acute , Methionine , Mice , Animals , Leukemia, Myeloid, Acute/pathology , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/therapeutic use , Histones/metabolism , Racemethionine
13.
J Inherit Metab Dis ; 45(6): 1118-1129, 2022 11.
Article in English | MEDLINE | ID: mdl-35778950

ABSTRACT

Our aim was to study the effect of secondary carnitine deficiency (SCD) and carnitine supplementation on important outcome measures for persons with medium-chain Acyl-CoA dehydrogenase deficiency (MCADD). We performed a large retrospective observational study using all recorded visits of persons with MCADD in the University Medical Center Groningen, the Netherlands, between October 1994 and October 2019. Frequency and duration of acute unscheduled preventive hospital visits, exercise tolerance, fatigue, and muscle pain were considered important clinical outcomes and were studied in relation to (acyl)carnitine profile and carnitine supplementation status. The study encompassed 1228 visits of 93 persons with MCADD. >60% had SCD during follow-up. This included only persons with severe MCADD. Carnitine supplementation and SCD were unrelated to the frequency and duration of the acute unscheduled preventive hospital visits (P > 0.05). The relative risk for fatigue, muscle ache, or exercise intolerance was equal between persons with and without SCD (RR 1.6, 95% CI 0.48-5.10, P = 0.4662). No episodes of metabolic crisis were recorded in non-carnitine-supplemented persons with MCADD and SCD. In some persons with MCADD, SCD resolved without carnitine supplementation. There is absence of real-world evidence in favor of routine carnitine analysis and carnitine supplementation in the follow-up of persons with MCADD.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Lipid Metabolism, Inborn Errors , Humans , Acyl-CoA Dehydrogenase , Lipid Metabolism, Inborn Errors/metabolism , Retrospective Studies
14.
Nutrients ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35889768

ABSTRACT

Patients dependent on chronic hemodialysis treatment are prone to malnutrition, at least in part due to insufficient nutrient intake, metabolic derangements, and chronic inflammation. Losses of amino acids during hemodialysis may be an important additional contributor. In this study, we assessed changes in plasma amino acid concentrations during hemodialysis, quantified intradialytic amino acid losses, and investigated whether plasma amino acid concentrations and amino acid losses by hemodialysis and urinary excretion are associated with fatigue. The study included a total of 59 hemodialysis patients (65 ± 15 years, 63% male) and 33 healthy kidney donors as controls (54 ± 10 years, 45% male). Total plasma essential amino acid concentration before hemodialysis was lower in hemodialysis patients compared with controls (p = 0.006), while total non-essential amino acid concentration did not differ. Daily amino acid losses were 4.0 ± 1.3 g/24 h for hemodialysis patients and 0.6 ± 0.3 g/24 h for controls. Expressed as proportion of protein intake, daily amino acid losses of hemodialysis patients were 6.7 ± 2.4% of the total protein intake, compared to 0.7 ± 0.3% for controls (p < 0.001). Multivariable regression analyses demonstrated that hemodialysis efficacy (Kt/V) was the primary determinant of amino acid losses (Std. ß = 0.51; p < 0.001). In logistic regression analyses, higher plasma proline concentrations were associated with higher odds of severe fatigue (OR (95% CI) per SD increment: 3.0 (1.3; 9.3); p = 0.03), while higher taurine concentrations were associated with lower odds of severe fatigue (OR (95% CI) per log2 increment: 0.3 (0.1; 0.7); p = 0.01). Similarly, higher daily taurine losses were also associated with lower odds of severe fatigue (OR (95% CI) per log2 increment: 0.64 (0.42; 0.93); p = 0.03). Lastly, a higher protein intake was associated with lower odds of severe fatigue (OR (95% CI) per SD increment: 0.2 (0.04; 0.5); p = 0.007). Future studies are warranted to investigate the mechanisms underlying these associations and investigate the potential of taurine supplementation.


Subject(s)
Kidney Failure, Chronic , Renal Dialysis , Amino Acids , Fatigue/etiology , Female , Homeostasis , Humans , Kidney Failure, Chronic/therapy , Male , Renal Dialysis/adverse effects , Taurine
15.
J Clin Lipidol ; 16(5): 658-666, 2022.
Article in English | MEDLINE | ID: mdl-35909048

ABSTRACT

BACKGROUND: Circulating fatty acids (FA) from de novo lipogenesis (DNL) are associated with all-cause mortality in individuals with elevated CVD risk. However, compared to FA early in the DNL synthetic pathway, cis-vaccenic acid, one of the FA distal in the DNL synthetic pathway, has rarely been studied in a general population cohort. We hypothesized that circulating cis-vaccenic acid is more strongly related to all-cause mortality than other circulating DNL-related FA. OBJECTIVES: The primary and secondary objectives of this study were to investigate the prospective associations of plasma levels of cis-vaccenic acid and other DNL-related FA with all-cause mortality in a general population, respectively. METHODS: We included 850 participants (mean ± SD age 53 ± 15 years) from the Dutch Lifelines cohort study. Circulating levels of palmitic (C16:0), palmitoleic (C16:1n7), cis-vaccenic (cis-C18:1n7), stearic (C18:0), oleic acid (C18:1n9) in plasma phospholipids (PL) and triglycerides (TG) were measured by gas chromatography. The associations of circulating cis-C18:1n7 and other DNL-related FA with all-cause mortality were assessed using Cox regression analyses. RESULTS: During a median follow-up of 9.3 (IQR: 5.4-10.8) years, 34 (4.0%) participants had died. In plasma PL, a 1-SD increase in cis-C18:1n7 was associated with an increased risk of all-cause mortality in univariate and multivariate models (p<0.02 for all), with a HR [95% CI] of 1.60 [1.13-2.25] after adjustment for age and sex. CONCLUSIONS: Circulating plasma PL cis-C18:1n7 was associated with a higher risk for all-cause mortality. More studies are needed in different cohorts to verify and validate our results.


Subject(s)
Fatty Acids , Lipogenesis , Humans , Adult , Middle Aged , Aged , Fatty Acids/metabolism , Cohort Studies , Phospholipids , Triglycerides/metabolism
16.
Nitric Oxide ; 125-126: 1-11, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35660109

ABSTRACT

Impaired endogenous nitric oxide (NO) production may contribute to graft failure and premature mortality in kidney transplant recipients (KTR). We investigated potential associations of 24-h urinary NOx (NO3- + NO2-) excretion (uNOx) with long-term outcomes. uNOx was determined by HPLC and GC-MS in 698 KTR and in 132 kidney donors before and after donation. Additionally, we measured urinary nitroso species (RXNO) by gas-phase chemiluminescence. Median uNOx was lower in KTR compared to kidney donors (688 [393-1076] vs. 1301 [868-1863] before donation and 1312 [982-1853] µmol/24 h after donation, P < 0.001). During median follow-up of 5.4 [4.8-6.1] years, 150 KTR died (61 due to cardiovascular disease) and 83 experienced graft failure. uNOx was inversely associated with all-cause mortality (HR per doubling of uNOx: 0.84 [95% CI 0.75-0.93], P < 0.001) and cardiovascular mortality (HR 0.78 [95% CI 0.67-0.92], P = 0.002). The association of uNOx with graft failure was lost when adjusted for renal function (HR per doubling of uNOx: 0.89 [95% CI 0.76-1.05], P = 0.17). There were no significant associations of urinary RXNO with outcomes. Our study suggests that KTR have lower NO production than healthy subjects and that lower uNOx is associated with a higher risk of all-cause and cardiovascular mortality.


Subject(s)
Cardiovascular Diseases , Kidney Transplantation , Cohort Studies , Humans , Nitric Oxide , Risk Factors , Transplant Recipients
17.
J Lipid Res ; 63(2): 100167, 2022 02.
Article in English | MEDLINE | ID: mdl-35007562

ABSTRACT

Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.


Subject(s)
Hematopoietic Stem Cell Mobilization
18.
Mol Genet Metab ; 135(1): 27-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34974973

ABSTRACT

BACKGROUND: Large neutral amino acid (LNAA) treatment has been suggested as alternative to the burdensome severe phenylalanine-restricted diet. While its working mechanisms and optimal composition have recently been further elucidated, the question whether LNAA treatment requires the natural protein-restricted diet, has still remained. OBJECTIVE: Firstly, to determine whether an additional liberalized natural protein-restricted diet could further improve brain amino acid and monoamine concentrations in phenylketonuria mice on LNAA treatment. Secondly, to compare the effect between LNAA treatment (without natural protein) restriction and different levels of a phenylalanine-restricted diet (without LNAA treatment) on brain amino acid and monoamine concentrations in phenylketonuria mice. DESIGN: BTBR Pah-enu2 mice were divided into two experimental groups that received LNAA treatment with either an unrestricted or semi phenylalanine-restricted diet. Control groups included Pah-enu2 mice on the AIN-93 M diet, a severe or semi phenylalanine-restricted diet without LNAA treatment, and wild-type mice receiving the AIN-93 M diet. After ten weeks, brain and plasma samples were collected to measure amino acid profiles and brain monoaminergic neurotransmitter concentrations. RESULTS: Adding a semi phenylalanine-restricted diet to LNAA treatment resulted in lower plasma phenylalanine but comparable brain amino acid and monoamine concentrations as compared to LNAA treatment (without phenylalanine restriction). LNAA treatment (without phenylalanine restriction) resulted in comparable brain monoamine but higher brain phenylalanine concentrations compared to the severe phenylalanine-restricted diet, and significantly higher brain monoamine but comparable phenylalanine concentrations as compared to the semi phenylalanine-restricted diet. CONCLUSIONS: Present results in PKU mice suggest that LNAA treatment in PKU patients does not need the phenylalanine-restricted diet. In PKU mice, LNAA treatment (without phenylalanine restriction) was comparable to a severe phenylalanine-restricted diet with respect to brain monoamine concentrations, notwithstanding the higher plasma and brain phenylalanine concentrations, and resulted in comparable brain phenylalanine concentrations as on a semi phenylalanine-restricted diet.


Subject(s)
Amino Acids, Neutral , Phenylketonurias , Animals , Dietary Supplements , Disease Models, Animal , Humans , Mice , Phenylalanine , Phenylketonurias/drug therapy , Phenylketonurias/metabolism
19.
Mol Genet Metab ; 134(3): 250-256, 2021 11.
Article in English | MEDLINE | ID: mdl-34656426

ABSTRACT

BACKGROUND: In phenylketonuria (PKU), treatment monitoring is based on frequent blood phenylalanine (Phe) measurements, as this is the predictor of neurocognitive and behavioural outcome by reflecting brain Phe concentrations and brain biochemical changes. Despite clinical studies describing the relevance of blood Phe to outcome in PKU patients, blood Phe does not explain the variance in neurocognitive and behavioural outcome completely. METHODS: In a PKU mouse model we investigated 1) the relationship between plasma Phe and brain biochemistry (Brain Phe and monoaminergic neurotransmitter concentrations), and 2) whether blood non-Phe Large Neutral Amino Acids (LNAA) would be of additional value to blood Phe concentrations to explain brain biochemistry. To this purpose, we assessed blood amino acid concentrations and brain Phe as well as monoaminergic neurotransmitter levels in in 114 Pah-Enu2 mice on both B6 and BTBR backgrounds using (multiple) linear regression analyses. RESULTS: Plasma Phe concentrations were strongly correlated to brain Phe concentrations, significantly negatively correlated to brain serotonin and norepinephrine concentrations and only weakly correlated to brain dopamine concentrations. From all blood markers, Phe showed the strongest correlation to brain biochemistry in PKU mice. Including non-Phe LNAA concentrations to the multiple regression model, in addition to plasma Phe, did not help explain brain biochemistry. CONCLUSION: This study showed that blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters. TAKE-HOME MESSAGE: Blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters.


Subject(s)
Brain Chemistry , Brain/physiopathology , Phenylketonurias/blood , Phenylketonurias/physiopathology , Amino Acids/blood , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/analysis , Phenylalanine/analysis
20.
Antioxidants (Basel) ; 10(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34356335

ABSTRACT

Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4-33.3] µmol/24 h versus 34.8 [IQR 25.6-46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06-1.45]; p = 0.007). During median follow-up for 5.3 [4.5-6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44-2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...