Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Physiol ; 12(1): coae045, 2024.
Article in English | MEDLINE | ID: mdl-38974502

ABSTRACT

In the age of global climate change, extreme climatic events are expected to increase in frequency and severity. Animals will be forced to cope with these novel stressors in their environment. Glucocorticoids (i.e. 'stress' hormones) facilitate an animal's ability to cope with their environment. To date, most studies involving glucocorticoids focus on the immediate physiological effects of an environmental stressor on an individual, few studies have investigated the long-term physiological impacts of such stressors. Here, we tested the hypothesis that previous exposure to an environmental stressor will impart lasting consequences to an individual's glucocorticoid levels. In semi-arid environments, variable rainfall drives forage availability for herbivores. Reduced seasonal precipitation can present an extreme environmental stressor potentially imparting long-term impacts on an individual's glucocorticoid levels. We examined the effects of rainfall and environmental characteristics (i.e. soil and vegetation attributes) during fawn-rearing (i.e. summer) on subsequent glucocorticoid levels of female white-tailed deer (Odocoileus virginianus) in autumn. We captured 124 adult (≥2.5-year-old) female deer via aerial net-gunning during autumn of 2015, 2016 and 2021 across four populations spanning a gradient of environmental characteristics and rainfall in the semi-arid environment of South Texas, USA. We found for every 1 cm decrease in summer rainfall, faecal glucocorticoid levels in autumn increased 6.9%, but only in lactating females. Glucocorticoid levels in non-lactating, female deer were relatively insensitive to environmental conditions. Our study demonstrates the long-lasting effects of environmental stressors on an individual's glucocorticoid levels. A better understanding of the long-term effects stressors impart on an individual's glucocorticoid levels will help to evaluate the totality of the cost of a stressor to an individual's welfare and predict the consequences of future climate scenarios.

2.
Sci Rep ; 13(1): 4455, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36932162

ABSTRACT

Helicopters used for aerial wildlife surveys are expensive, dangerous and time consuming. Drones and thermal infrared cameras can detect wildlife, though the ability to detect individuals is dependent on weather conditions. While we have a good understanding of local weather conditions, we do not have a broad-scale assessment of ambient temperature to plan drone wildlife surveys. Climate change will affect our ability to conduct thermal surveys in the future. Our objective was to determine optimal annual and daily time periods to conduct surveys. We present a case study in Texas, (United States of America [USA]) where we acquired and compared average monthly temperature data from 1990 to 2019, hourly temperature data from 2010 to 2019 and projected monthly temperature data from 2021 to 2040 to identify areas where surveys would detect a commonly studied ungulate (white-tailed deer [Odocoileus virginianus]) during sunny or cloudy conditions. Mean temperatures increased when comparing the 1990-2019 to 2010-2019 periods. Mean temperatures above the maximum ambient temperature in which white-tailed deer can be detected increased in 72, 10, 10, and 24 of the 254 Texas counties in June, July, August, and September, respectively. Future climate projections indicate that temperatures above the maximum ambient temperature in which white-tailed deer can be detected will increase in 32, 12, 15, and 47 counties in June, July, August, and September, respectively when comparing 2010-2019 with 2021-2040. This analysis can assist planning, and scheduling thermal drone wildlife surveys across the year and combined with daily data can be efficient to plan drone flights.


Subject(s)
Animals, Wild , Deer , Humans , Animals , Unmanned Aerial Devices , Climate Change
3.
Ecol Evol ; 12(10): e9376, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36203632

ABSTRACT

Net-wire fencing built to confine livestock is common on rangelands in the Southwestern USA, yet the impacts of livestock fencing on wildlife are largely unknown. Many wildlife species cross beneath fences at defined crossing locations because they prefer to crawl underneath rather than jump over fences. Animals occasionally become entangled jumping or climbing over fences, leading to injury or death. More commonly, repeated crossings under net-wire fencing by large animals lead to fence damage, though the damage is often tolerated by landowners until the openings affect the ability to enclose livestock. The usage, placement, characteristics, and passage rates of fence crossings beneath net-wire fencing are poorly understood. We monitored 20 randomly selected fence crossings on net-wire livestock fencing across two study sites on rangelands in South Texas, USA, from April 2018 to March 2019. We assessed the characteristics of fence-crossing locations (openings beneath the fence created by animals to aid in crossing) and quantified crossing rates and the probability of crossing by all species of animals via trail cameras. We documented 10,889 attempted crossing events, with 58% (n = 6271) successful. Overall, 15 species of medium- and large-size mammals and turkey (Meleagris gallopavo) contributed to crossing events. Crossing locations received 3-4 crossing attempts per day on average, but the number of attempts and probability of successful crossing varied by location and fence condition. The probability of crossing attempts was most consistently influenced by the opening size of the crossing and season; as crossing size (opening) increased, the probability of successful crossing significantly increased for all species. Peaks in crossing activity corresponded with species' daily and seasonal movements and activity. The density and size of fence-crossing locations were dependent on fence maintenance and not associated with vegetation communities or habitat variables. However, crossing locations were often re-established in the same locations after fence repairs. This is one of the few studies to monitor how all animal species present interacted with net-wire livestock fencing in rangelands. Our results will help land managers understand the impact of net-wire livestock fencing on animal movement.

4.
J Anim Ecol ; 87(6): 1600-1614, 2018 11.
Article in English | MEDLINE | ID: mdl-30079548

ABSTRACT

Patterns of male reproductive allocation provide insight into life-history characteristics. The trade-offs associated with resource and female group defence are well-defined. However, less is understood about trade-offs in species that practise scramble-competition polygyny, where successful strategies may favour competitive mate-searching rather than contest competition and fighting. White-tailed deer (Odocoileus virginianus) practise scramble-competition polygyny where solitary males search for and assess receptivity of females scattered across the landscape. Physically mature males are expected to do most of the breeding because of the high energetic costs of reproduction and high social status. However, young males may collectively sire one-third of offspring. To gain a better understanding of trade-offs associated with scramble-competition polygyny, we quantified metrics associated with reproductive effort and success. We quantified changes in body mass of harvested males, energetic costs of locomotion based on movements of GPS radiocollared males and timing of reproduction via temporal genetic parentage assignments. Young males (1.5 and 2.5 years old) sired offspring, but their mating success was mainly limited to peak rut, when most females were in oestrus. Furthermore, multiple paternity was common, indicating opportunistic reproduction. Reproductive effort, indexed by body mass loss, was highest in prime-age males (5.5-6.5 years old). Surprisingly, young and postprime males also exhibited significant body mass loss, indicative of investment in reproductive effort. Movement rates increased twofold to fourfold during rut as a function of mate search activities, but cost of locomotion would cause only about one-third of observed body mass loss. Because males are capital breeders, we infer most of body mass loss is due to reduced foraging. In scramble-competition polygyny, the repeated location of potential mates and assessment of their oestrous status appear to be important constituents of male mating strategies. Therefore, mating success may be influenced by time management and spatial memory, and not based solely on social dominance. Thus, reproductive effort should be greater for individuals capable of reducing time foraging. For those that cannot, opportunistic mating opportunities may arise when operative adult sex ratios are low. Our analyses reveal valuable insight into the trade-offs associated with scramble-competition polygyny.


Subject(s)
Deer , Sexual Behavior, Animal , Animals , Breeding , Female , Male , Marriage , Reproduction
5.
Prev Vet Med ; 146: 166-172, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28992923

ABSTRACT

Wildlife, both native and introduced, can harbor and spread diseases of importance to the livestock industry. Describing movement patterns of such wildlife is essential to formulate effective disease management strategies. Nilgai antelope (Boselaphus tragocamelus) are a free-ranging, introduced ungulate in southern Texas known to carry cattle fever ticks (CFT, Rhipicephalus (Boophilus) microplus, R. (B.) annulatus). CFT are the vector for the etiological agent of bovine babesiosis, a lethal disease causing high mortality in susceptible Bos taurus populations and severely affecting the beef cattle industry. Efforts to eradicate CFT from the United States have been successful. However, a permanent quarantine area is maintained between Texas and Mexico to check its entry from infested areas of neighboring Mexico states on wildlife and stray cattle. In recent years, there has been an increase in CFT infestations outside of the permanent quarantine area in Texas. Nilgai are of interest in understanding how CFT may be spread through the landscape. Thirty nilgai of both sexes were captured and fitted with satellite radio collars in South Texas to gain information about movement patterns, response to disturbances, and movement barriers. Median annual home range sizes were highly variable in males (4665ha, range=571-20,809) and females (1606ha, range=848-29,909). Female movement patterns appeared to be seasonal with peaks during June-August; these peaks appeared to be a function of break-ups in female social groups rather than environmental conditions. Nilgai, which reportedly are sensitive to disturbance, were more likely to relocate into new areas immediately after being captured versus four other types of helicopter activities. Nilgai did not cross 1.25m high cattle fences parallel to paved highways but did cross other fence types. Results indicate that females have a higher chance of spreading CFT through the landscape than males, but spread of CFT may be mitigated via maintenance of cattle fences running parallel with paved highways. Our results highlight the importance of documenting species-specific behavior in wildlife-livestock interfaces that can be used to develop effective disease management strategies in the United States and worldwide.


Subject(s)
Antelopes/parasitology , Babesiosis/transmission , Cattle Diseases/parasitology , Cattle Diseases/transmission , Animals , Animals, Wild , Babesia/microbiology , Babesiosis/prevention & control , Cattle , Cattle Diseases/prevention & control , Communicable Disease Control/methods , Female , Geographic Information Systems , Humans , Male , Mexico , Movement , Rhipicephalus , Seasons , Texas
6.
PLoS One ; 11(10): e0163592, 2016.
Article in English | MEDLINE | ID: mdl-27711208

ABSTRACT

White-tailed deer are a culturally and economically important game species in North America, especially in South Texas. The recent discovery of chronic wasting disease (CWD) in captive deer facilities in Texas has increased concern about the potential emergence of CWD in free-ranging deer. The concern is exacerbated because much of the South Texas region is a semi-arid environment with variable rainfall, where precipitation is strongly correlated with fawn recruitment. Further, the marginally productive rangelands, in combination with erratic fawn recruitment, results in populations that are frequently density-independent, and thus sensitive to additive mortality. It is unknown how a deer population in semi-arid regions would respond to the presence of CWD. We used long-term empirical datasets from a lightly harvested (2% annual harvest) population in conjunction with 3 prevalence growth rates from CWD afflicted areas (0.26%, 0.83%, and 2.3% increases per year) via a multi-stage partially deterministic model to simulate a deer population for 25 years under four scenarios: 1) without CWD and without harvest, 2) with CWD and without harvest, 3) with CWD and male harvest only, and 4) with CWD and harvest of both sexes. The modeled populations without CWD and without harvest averaged a 1.43% annual increase over 25 years; incorporation of 2% annual harvest of both sexes resulted in a stable population. The model with slowest CWD prevalence rate growth (0.26% annually) without harvest resulted in stable populations but the addition of 1% harvest resulted in population declines. Further, the male age structure in CWD models became skewed to younger age classes. We incorporated fawn:doe ratios from three CWD afflicted areas in Wisconsin and Wyoming into the model with 0.26% annual increase in prevalence and populations did not begin to decline until ~10%, ~16%, and ~26% of deer were harvested annually. Deer populations in variable environments rely on high adult survivorship to buffer the low and erratic fawn recruitment rates. The increase in additive mortality rates for adults via CWD negatively impacted simulated population trends to the extent that hunter opportunity would be greatly reduced. Our results improve understanding of the potential influences of CWD on deer populations in semi-arid environments with implications for deer managers, disease ecologists, and policy makers.


Subject(s)
Deer , Environment , Models, Statistical , Wasting Disease, Chronic/epidemiology , Animals , Droughts , Female , Male , Surveys and Questionnaires
7.
Vet Microbiol ; 134(3-4): 362-7, 2009 Mar 02.
Article in English | MEDLINE | ID: mdl-18834678

ABSTRACT

Economic losses due to infection with Bovine viral diarrhea virus (BVDV) have prompted introduction of organized control programs. These programs primarily focus on the removal of persistently infected (PI) animals, the main source of BVDV transmission. Recently, persistent BVDV infection was demonstrated experimentally in white-tailed deer, the most abundant wild ruminant in North America. Contact of cattle and white-tailed deer may result in interspecific BVDV transmission and birth of persistently infected offspring that could be a threat to control programs. The objective of this study was to assess the potential for interspecific BVDV transmission from persistently infected cattle cohabitated with pregnant white-tailed deer. Seven female and one male white-tailed deer were captured and bred in captivity. At approximately 50 days of gestation, two cattle persistently infected with BVDV 1 were cohabitated with the deer. In a pen of approximately 0.8 ha, both species shared food and water sources for a period of 60 days. Transmission of BVDV as indicated by seroconversion was demonstrated in all exposed adult deer. Of the seven pregnancies, four resulted in offspring that were infected with BVDV. Persistent infection was demonstrated in three singlet fawns by immunohistochemistry and ELISA on skin samples, PCR, and virus isolation procedures. Furthermore, two stillborn fetuses were apparently persistently infected. This is the first report of BVDV transmission from cattle to white-tailed deer using a model of natural challenge. Under appropriate circumstances, BVDV may efficiently cross the species barrier to cause transplacental infection and persistently infected offspring in a wildlife species.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/transmission , Deer , Diarrhea Viruses, Bovine Viral/physiology , Animals , Cattle , Disease Susceptibility , Female , Infectious Disease Transmission, Vertical , Pregnancy , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...