Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Biol Open ; 12(6)2023 06 15.
Article in English | MEDLINE | ID: mdl-37272627

ABSTRACT

Genetic studies place Tbx5 at the apex of the sinoatrial node (SAN) transcriptional program. To understand its role in SAN differentiation, clonal embryonic stem (ES) cell lines were made that conditionally overexpress Tbx5, Tbx3, Tbx18, Shox2, Islet-1, and MAP3k7/TAK1. Cardiac cells differentiated using embryoid bodies (EBs). EBs overexpressing Tbx5, Islet1, and TAK1 beat faster than cardiac cells differentiated from control ES cell lines, suggesting possible roles in SAN differentiation. Tbx5 overexpressing EBs showed increased expression of TAK1, but cardiomyocytes did not differentiate as SAN cells. EBs showed no change in the expression of the SAN transcription factors Shox2 and Islet1 and decreased expression of the SAN channel protein HCN4. EBs constitutively overexpressing TAK1 direct cardiac differentiation to the SAN fate but have reduced phosphorylation of its targets, p38 and Jnk. This opens the possibility that blocking the phosphorylation of TAK1 targets may have the same impact as forced overexpression. To test this, we treated EBs with 5z-7-Oxozeanol (OXO), an inhibitor of TAK1 phosphorylation. Like TAK1 overexpressing cardiac cells, cardiomyocytes differentiated in the presence of OXO beat faster and showed increased expression of SAN genes (Shox2, HCN4, and Islet1). This suggests that activation of the SAN transcriptional network can be accomplished by blocking the phosphorylation of TAK1.


Subject(s)
Embryoid Bodies , Myocytes, Cardiac , Embryoid Bodies/metabolism , Sinoatrial Node/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Cell Differentiation/genetics
2.
Paediatr Perinat Epidemiol ; 36(5): 654-664, 2022 09.
Article in English | MEDLINE | ID: mdl-36530363

ABSTRACT

Background: Children born extremely preterm (EP) are at increased risk of cognitive deficits that persist into adulthood. Few large cohort studies have examined differential impairment of cognitive function in EP-born adolescents in relation to early life risk factors, including maternal social disadvantage, gestational age at delivery, and neonatal morbidities prevalent among EP neonates. Objectives: To assess cognitive abilities in relation to early life risk factors in an EP-born cohort at 15 years of age. Methods: 681 of 1198 surviving participants (57%) enrolled from 2002 to 2004 in the Extremely Low Gestational Age Newborn Study returned at age 15 years for an assessment of cognitive abilities with the Wechsler Abbreviated Scale of Intelligence-II and the NIH Toolbox Cognition Battery (NTCB) verbal cognition and fluid processing composites, the latter of which measured executive functions and processing speed. Three cognitive outcomes, WASI-II IQ, NTCB verbal cognition, and NTCB fluid processing, were analyzed for associations with maternal social disadvantage and gestational age. Mediation of maternal social disadvantage by gestational age and mediation of gestational age by neonatal morbidities were also examined. Results: Test scores were lower for NTCB fluid processing relative to IQ and NTCB verbal abilities. Social disadvantage and gestational age were associated with all three cognitive outcomes. Mediation analyses indicated partial mediation of gestational age associations with all three outcomes by neonatal morbidities but did not support mediation by gestational age of social risk associations with cognitive outcomes. Conclusions: Greater maternal social disadvantage and lower gestational age are associated with less favorable cognitive outcomes among EP-born adolescents at 15 years of age. Neonatal morbidities partially mediate associations between lower gestational age and cognitive outcomes. These findings highlight the need for improved medical and remedial interventions to mitigate risk of poor cognitive outcomes among EP-born adolescents.


Subject(s)
Infant, Extremely Premature , Intelligence , Infant, Newborn , Child , Adolescent , Humans , Adult , Gestational Age , Infant, Extremely Premature/psychology , Cognition
3.
J Neurodev Disord ; 14(1): 57, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494616

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability in males and the most common single gene cause of autism. This X-linked disorder is caused by an expansion of a trinucleotide CGG repeat (> 200 base pairs) on the promotor region of the fragile X messenger ribonucleoprotein 1 gene (FMR1). This leads to the deficiency or absence of the encoded protein, fragile X messenger ribonucleoprotein 1 (FMRP). FMRP has a central role in the translation of mRNAs involved in synaptic connections and plasticity. Recent studies have demonstrated the benefit of therapeutics focused on reactivation of the FMR1 locus towards improving key clinical phenotypes via restoration of FMRP and ultimately disease modification. A key step in future studies directed towards this effort is the establishment of proof of concept (POC) for FMRP reactivation in individuals with FXS. For this, it is key to determine the feasibility of repeated collection of tissues or fluids to measure FMR1 mRNA and FMRP. METHODS: Individuals, ages 3 to 22 years of age, with FXS and those who were typically developing participated in this single-site pilot clinical biomarker study. The repeated collection of hair follicles was compared with the collection of blood and buccal swabs for detection of FMR1 mRNA and FMRP and related molecules. RESULTS: There were n = 15 participants, of whom 10 had a diagnosis of FXS (7.0 ± 3.56 years) and 5 were typically developing (8.2 ± 2.77 years). Absolute levels of FMRP and FMR1 mRNA were substantially higher in healthy participants compared to full mutation and mosaic FXS participants and lowest in the FXS boys. Measurement of FMR1 mRNA and FMRP levels by any method did not show any notable variation by collection location at home versus office across the various sample collection methodologies of hair follicle, blood sample, and buccal swab. CONCLUSION: Findings demonstrated that repeated sampling of hair follicles in individuals with FXS, in both, home, and office settings, is feasible, repeatable, and can be used for measurement of FMR1 mRNA and FMRP in longitudinal studies.


Subject(s)
Fragile X Syndrome , Male , Humans , Fragile X Syndrome/genetics , Fragile X Mental Retardation Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Hair Follicle/metabolism , Pilot Projects
5.
Mol Autism ; 12(1): 38, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034808

ABSTRACT

BACKGROUND: Sulforaphane (SF), an isothiocyanate in broccoli, has potential benefits relevant to autism spectrum disorder (ASD) through its effects on several metabolic and immunologic pathways. Previous clinical trials of oral SF demonstrated positive clinical effects on behavior in young men and changes in urinary metabolomics in children with ASD. METHODS: We conducted a 15-week randomized parallel double-blind placebo-controlled clinical trial with 15-week open-label treatment and 6-week no-treatment extensions in 57 children, ages 3-12 years, with ASD over 36 weeks. Twenty-eight were assigned SF and 29 received placebo (PL). Clinical effects, safety and tolerability of SF were measured as were biomarkers to elucidate mechanisms of action of SF in ASD. RESULTS: Data from 22 children taking SF and 23 on PL were analyzed. Treatment effects on the primary outcome measure, the Ohio Autism Clinical Impressions Scale (OACIS), in the general level of autism were not significant between SF and PL groups at 7 and 15 weeks. The effect sizes on the OACIS were non-statistically significant but positive, suggesting a possible trend toward greater improvement in those on treatment with SF (Cohen's d 0.21; 95% CI - 0.46, 0.88 and 0.10; 95% CI - 0.52, 0.72, respectively). Both groups improved in all subscales when on SF during the open-label phase. Caregiver ratings on secondary outcome measures improved significantly on the Aberrant Behavior Checklist (ABC) at 15 weeks (Cohen's d - 0.96; 95% CI - 1.73, - 0.15), but not on the Social Responsiveness Scale-2 (SRS-2). Ratings on the ABC and SRS-2 improved with a non-randomized analysis of the length of exposure to SF, compared to the pre-treatment baseline (p < 0.001). There were significant changes with SF compared to PL in biomarkers of glutathione redox status, mitochondrial respiration, inflammatory markers and heat shock proteins. Clinical laboratory studies confirmed product safety. SF was very well tolerated and side effects of treatment, none serious, included rare insomnia, irritability and intolerance of the taste and smell. LIMITATIONS: The sample size was limited to 45 children with ASD and we did not impute missing data. We were unable to document significant changes in clinical assessments during clinical visits in those taking SF compared to PL. The clinical results were confounded by placebo effects during the open-label phase. CONCLUSIONS: SF led to small yet non-statistically significant changes in the total and all subscale scores of the primary outcome measure, while for secondary outcome measures, caregivers' assessments of children taking SF showed statistically significant improvements compared to those taking PL on the ABC but not the SRS-2. Clinical effects of SF were less notable in children compared to our previous trial of a SF-rich preparation in young men with ASD. Several of the effects of SF on biomarkers correlated to clinical improvements. SF was very well tolerated and safe and effective based on our secondary clinical measures. TRIAL REGISTRATION: This study was prospectively registered at clinicaltrials.gov (NCT02561481) on September 28, 2015. Funding was provided by the U.S. Department of Defense.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/drug therapy , Child , Child, Preschool , Humans , Isothiocyanates/adverse effects , Laboratories, Clinical , Sulfoxides , United States
6.
J Mol Cell Cardiol ; 137: 132-142, 2019 12.
Article in English | MEDLINE | ID: mdl-31668971

ABSTRACT

Specification of the primary heart field in mouse embryos requires signaling from the anterior visceral endoderm (AVE). The nature of these signals is not known. We hypothesized that the TGFß-activated kinase (TAK1/Map3k7) may act as a cardiogenic factor, based on its expression in heart-inducing endoderm and its requirement for cardiac differentiation of p19 cells. To test this, mouse embryonic stem (ES) cells overexpressing Map3k7 were isolated and differentiated as embryoid bodies (EBs). Map3k7-overexpressing EBs showed increased expression of AVE markers but interestingly, showed little effect on mesoderm formation and had no impact on overall cardiomyocyte formation. To test whether the pronounced expansion of endoderm masks an expansion of cardiac lineages, chimeric EBs were made consisting of Map3k7-overexpressing ES and wild type ES cells harboring a cardiac reporter transgene, MHCα::GFP, allowing cardiac differentiation to be assessed specifically in wild type ES cells. Wild type ES cells co-cultured with Map3k7-overexpressing cells had a 4-fold increase in expression of the cardiac reporter, supporting the hypothesis that Map3k7 increases the formation of cardiogenic endoderm. To further examine the role of Map3k7 in early lineage specification, other endodermal markers were examined. Interestingly, markers that are expressed in both the VE and later in gut development were expanded, whereas transcripts that specifically mark the early definitive (streak-derived) endoderm (DE) were not. To determine if Map3k7 is necessary for endoderm differentiation, EBs were grown in the presence of the Map3k7 specific inhibitor 5Z-7-oxozeaenol. Endoderm differentiation was dramatically decreased in these cells. Western blot analysis showed that known downstream targets of Map3k7 (Jnk, Nemo-like kinase (NLK) and p38 MAPK) were all inhibited. By contrast, transcripts for another TGFß target, Sonic Hedgehog (Shh) were markedly upregulated, as were transcripts for Gli2 (but not Gli1 and Gli3). Together these data support the hypothesis that Map3k7 governs the formation, or proliferation of cardiogenic endoderm.


Subject(s)
Cell Differentiation , Endoderm/embryology , Endoderm/enzymology , Heart/embryology , MAP Kinase Kinase Kinases/metabolism , Mouse Embryonic Stem Cells/cytology , Organogenesis , Animals , Cell Line , Embryoid Bodies/cytology , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System , Mesoderm/embryology , Mice , Myocytes, Cardiac/cytology , Up-Regulation/genetics , Zinc Finger Protein Gli2/metabolism
7.
Sci Rep ; 9(1): 1738, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30742009

ABSTRACT

The cardiac transcription factor Nkx2-5 is essential for normal outflow tract (OFT) and right ventricle (RV) development. Nkx2-5-/- null mouse embryos display severe OFT and RV hypoplasia and a single ventricle phenotype due to decreased proliferation of Second Heart Field (SHF) cells, a pool of cardiac progenitors present in anterior pharyngeal arch mesoderm at mid-gestation. However, definition of the precise role of Nkx2-5 in facilitating SHF expansion is incomplete. We have found that Nkx2-5 positively and directly regulates a novel target gene, Ccdc117, in cells of the SHF at these stages. The nuclear/mitotic spindle associated protein Ccdc117 interacts with the MIP18/MMS19 cytoplasmic iron-sulfur (FeS) cluster assembly (CIA) complex, which transfers critical FeS clusters to several key enzymes with functions in DNA repair and replication. Loss of cellular Ccdc117 expression results in reduced proliferation rates associated with a delay at the G1-S transition, decreased rates of DNA synthesis, and unresolved DNA damage. These results implicate a novel role for Nkx2-5 in the regulation of cell cycle events in the developing heart, through Ccdc117's interaction with elements of the CIA pathway and the facilitation of DNA replication during SHF expansion.


Subject(s)
DNA Replication , DNA/genetics , DNA/metabolism , Homeobox Protein Nkx-2.5/metabolism , Animals , Biomarkers , Cell Proliferation , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Mice , Models, Biological
8.
PLoS One ; 12(12): e0189818, 2017.
Article in English | MEDLINE | ID: mdl-29281682

ABSTRACT

In vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by unique electrophysiologies, molecular markers and morphologies. The mechanisms directing myocardial cells to specific sub-lineages remain poorly understood. Here we report that overexpression of TGFß-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES) cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells toward the sinoatrial node (SAN) lineage. Most cardiac cells in Map3k7-overexpressing EBs adopt markers, cellular morphologies, and electrophysiological behaviors characteristic of the SAN. These data, in addition to the fact that Map3k7 is upregulated in the sinus venous-the source of cells for the SAN-suggest that Map3k7 may be an endogenous regulator of the SAN fate.


Subject(s)
Cell Differentiation/genetics , MAP Kinase Kinase Kinases/genetics , Myocytes, Cardiac/cytology , Sinoatrial Node/cytology , Animals , Cells, Cultured , Genetic Vectors , Lentivirus/genetics , Mice , Real-Time Polymerase Chain Reaction
9.
J Child Adolesc Psychopharmacol ; 25(4): 314-22, 2015 May.
Article in English | MEDLINE | ID: mdl-25919578

ABSTRACT

OBJECTIVE: An imbalance of excitatory and inhibitory neurotransmission in autism spectrum disorder (ASD) has been proposed. We compared glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) levels in the anterior cingulate cortex (ACC) of 13 males with ASD and 14 typically developing (TD) males (ages 13-17), and correlated these levels with intelligence quotient (IQ) and measures of social cognition. METHODS: Social cognition was evaluated by administration of the Social Responsiveness Scale (SRS) and the Reading the Mind in the Eyes Test (RMET). We acquired proton magnetic resonance spectroscopy ((1)H-MRS) data from the bilateral ACC using the single voxel point resolved spectroscopy sequence (PRESS) to quantify Glu and Gln, and Mescher-Garwood point-resolved spectroscopy sequence (MEGA-PRESS) to quantify GABA levels referenced to creatine (Cr). RESULTS: There were higher Gln levels (p=0.04), and lower GABA/Cre levels (p=0.09) in the ASD group than in the TD group. There was no difference in Glu levels between groups. Gln was negatively correlated with RMET score (rho=-0.62, p=0.001) and IQ (rho=-0.56, p=0.003), and positively correlated with SRS scores (rho=0.53, p=0.007). GABA/Cre levels were positively correlated with RMET score (rho=0.34, p=0.09) and IQ (rho=0.36, p=0.07), and negatively correlated with SRS score (rho=-0.34, p=0.09). CONCLUSIONS: These data suggest an imbalance between glutamatergic neurotransmission and GABA-ergic neurotransmission in ASD. Higher Gln levels and lower GABA/Cre levels were associated with lower IQ and greater impairments in social cognition across groups.


Subject(s)
Autism Spectrum Disorder/psychology , Cognition , Glutamine/analysis , Gyrus Cinguli/chemistry , gamma-Aminobutyric Acid/analysis , Adolescent , Autism Spectrum Disorder/metabolism , Creatinine/analysis , Humans , Intelligence , Magnetic Resonance Spectroscopy , Male
10.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25349455

ABSTRACT

Despite the importance of the gut and its accessory organs, our understanding of early endoderm development is still incomplete. Traditionally, endoderm has been difficult to study because of its small size and relative fragility. However, recent advances in live cell imaging technologies have dramatically expanded our understanding of this tissue, adding a new appreciation for the complex molecular and morphogenetic processes that mediate gut formation. Several spatially and molecularly distinct subpopulations have been shown to exist within the endoderm before the onset of gastrulation. Here, we review findings that have uncovered complex cell movements within the endodermal layer, before and during gastrulation, leading to the conclusion that cells from primitive endoderm contribute descendants directly to gut.


Subject(s)
Cell Differentiation/physiology , Cell Movement/physiology , Endoderm/cytology , Endoderm/embryology , Gastrointestinal Tract/embryology , Morphogenesis/physiology , Animals , Mice , Models, Biological
11.
Hypertens Pregnancy ; 33(4): 412-26, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24987805

ABSTRACT

OBJECTIVE: Preeclampsia (PE) affects 2-8% of pregnancies worldwide and is a significant source of maternal and neonatal morbidity and mortality. However, the mechanisms underlying PE are poorly understood and major questions regarding etiology and risk factors remain to be addressed. Our objective was to examine whether abnormal expression of the cardiovascular developmental transcription factor, Nkx2-5, was associated with early onset and severe preeclampsia (EOSPE). METHODS: Using qPCR and immunohistochemical assay, we examined expression of Nkx2-5 and target gene expression in EOSPE and control placental tissue. We tested resulting mechanistic hypotheses in cultured cells using shRNA knockdown, qPCR, and western blot. RESULTS: Nkx2-5 is highly expressed in racially disparate fashion (Caucasians > African Americans) in a subset of early EOSPE placentae. Nkx2-5 mRNA expression is highly correlated (Caucasians > African Americans) to mRNA expression of the preeclampsia marker sFlt-1, and of the Nkx2-5 target and RNA splicing factor, Sam68. Knockdown of Sam68 expression in cultured cells significantly impacts sFlt-1 mRNA isoform generation in vitro, supporting a mechanistic hypothesis that Nkx2-5 impacts EOSPE severity in a subset of patients via upregulation of Sam68 to increase sFlt-1 expression. Expression of additional Nkx2-5 targets potentially regulating metabolic stress response is also elevated in a racially disparate fashion in EOSPE. CONCLUSIONS: Expression of Nkx2-5 and its target genes may directly influence the genesis and racially disparate severity, and define a mechanistically distinct subclass of EOSPE.


Subject(s)
Homeodomain Proteins/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Transcription Factors/metabolism , Black or African American , Case-Control Studies , Female , Gene Expression , HEK293 Cells , Homeobox Protein Nkx-2.5 , Humans , Pre-Eclampsia/ethnology , Pregnancy , South Carolina/epidemiology , White People
12.
Crit Rev Biomed Eng ; 42(3-4): 213-27, 2014.
Article in English | MEDLINE | ID: mdl-25597237

ABSTRACT

The heart is a large organ containing many cell types, each of which is necessary for normal function. Because of this, cardiac regenerative medicine presents many unique challenges. Because each of the many types of cells within the heart has unique physiological and electrophysiological characteristics, donor cells must be well matched to the area of the heart into which they are grafted to avoid mechanical dysfunction or arrhythmia. In addition, grafted cells must be functionally integrated into host tissue to effectively repair cardiac function. Because of its size and physiological function, the metabolic needs of the heart are considerable. Therefore grafts must contain not only cardiomyocytes but also a functional vascular network to meet their needs for oxygen and nutrition. In this article we review progress in the use of pluripotent stem cells as a source of donor cardiomyocytes and highlight current unmet needs in the field. We also examine recent tissue engineering approaches integrating cells with various engineered materials that should address some of these unmet needs.


Subject(s)
Heart/physiology , Regenerative Medicine , Tissue Engineering , Animals , Cell- and Tissue-Based Therapy , Humans , Mice , Myocardium/cytology , Myocytes, Cardiac , Pluripotent Stem Cells
13.
Biol Open ; 1(3): 208-19, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-23213411

ABSTRACT

Interactions between the endoderm and mesoderm that mediate myocardial induction are difficult to study in vivo because of the small size of mammalian embryos at relevant stages. However, we and others have demonstrated that signals from endodermal cell lines can influence myocardial differentiation from both mouse and human embryoid bodies (EBs), and because of this, assays that utilize embryonic stem (ES) cells and endodermal cell lines provide excellent in vitro models to study early cardiac differentiation. Extraembryonic endoderm (XEN) stem cells have a particular advantage over other heart-inducing cell lines in that they can easily be derived from both wild type and mutant mouse blastocysts. Here we describe the first isolation of a Nodal mutant XEN stem cell line. Nodal(-/-) XEN cell lines were not isolated at expected Mendelian ratios, and those that were successfully established, showed an increase in markers for the anterior visceral endoderm (AVE). Since AVE represents the heart-inducing endoderm in the mouse, cardiac differentiation was compared in EBs treated with conditioned medium (CM) collected from wild type or Nodal(-/-) XEN cells. EBs treated with CM from Nodal(-/-) cells began beating earlier and showed early activation of myocardial genes, but this early cardiac differentiation did not cause an overall increase in cardiomyocyte yield. By comparison, CM from wild type XEN cells both delayed cardiac differentiation and caused a concomitant increase in overall cardiomyocyte formation. Detailed marker analysis suggested that early activation of cardiac differentiation by Nodal(-/-) XEN CM caused premature differentiation and subsequent depletion of cardiac progenitors.

14.
Ann N Y Acad Sci ; 1271: 97-103, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23050970

ABSTRACT

The transfer of nutrients from the mother through the chorioallantoic placenta meets the nutritional needs of the embryo during human prenatal development. Although all amniotes start with a similar "tool kit" of extraembryonic tissues, an enormous diversity of extraembryonic tissue formation has evolved to accommodate embryological and physiological constraints unique to their developmental programs. A comparative knowledge of these extraembryonic tissues and their role in nutrient uptake during development is required to fully appreciate the adaptive changes in placental mammals. Here, we offer a comparative embryological perspective and propose that there are three conserved nutrient transfer routes among the amniotes. We highlight the importance of the yolk sac endoderm, thought to be a vestigial remnant of our amniote lineage, in mediating nutrient uptake during early human development. We also draw attention to the similarity between yolk sac endoderm-mediated and trophectoderm-mediated nutrient uptake.


Subject(s)
Embryonic Development , Vertebrates/embryology , Animals , Chorioallantoic Membrane , Extraembryonic Membranes/metabolism , Female , Humans , Maternal-Fetal Exchange , Placenta , Pregnancy
15.
Article in English | MEDLINE | ID: mdl-20830688

ABSTRACT

Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.


Subject(s)
Heart/physiology , Myocytes, Cardiac/physiology , Signal Transduction , Systems Biology , Animals , Heart/growth & development , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism
16.
PLoS One ; 5(10): e13446, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20975998

ABSTRACT

BACKGROUND: Initial specification of cardiomyocytes in the mouse results from interactions between the extraembryonic anterior visceral endoderm (AVE) and the nascent mesoderm. However the mechanism by which AVE activates cardiogenesis is not well understood, and the identity of specific cardiogenic factors in the endoderm remains elusive. Most mammalian studies of the cardiogenic potential of the endoderm have relied on the use of cell lines that are similar to the heart-inducing AVE. These include the embryonal-carcinoma-derived cell lines, END2 and PYS2. The recent development of protocols to isolate eXtraembryonic ENdoderm (XEN) stem cells, representing the extraembryonic endoderm lineage, from blastocyst stage mouse embryos offers new tools for the genetic dissection of cardiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that XEN cell-conditioned media (CM) enhances cardiogenesis during Embryoid Body (EB) differentiation of mouse embryonic stem (ES) cells in a manner comparable to PYS2-CM and END2-CM. Addition of CM from each of these three cell lines enhanced the percentage of EBs that formed beating areas, but ultimately, only XEN-CM and PYS2-CM increased the total number of cardiomyocytes that formed. Furthermore, our observations revealed that both contact-independent and contact-dependent factors are required to mediate the full cardiogenic potential of the endoderm. Finally, we used gene array comparison to identify factors in these cell lines that could mediate their cardiogenic potential. CONCLUSIONS/SIGNIFICANCE: These studies represent the first step in the use of XEN cells as a molecular genetic tool to study cardiomyocyte differentiation. Not only are XEN cells functionally similar to the heart-inducing AVE, but also can be used for the genetic dissection of the cardiogenic potential of AVE, since they can be isolated from both wild type and mutant blastocysts. These studies further demonstrate the importance of both contact-dependent and contact-independent factors in cardiogenesis and identify potential heart-inducing proteins in the endoderm.


Subject(s)
Embryonic Stem Cells/cytology , Endoderm/cytology , Heart/embryology , Animals , Cell Differentiation , Cell Line , Culture Media, Conditioned , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Mice , Oligonucleotide Array Sequence Analysis
17.
PLoS One ; 5(8): e12016, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20711519

ABSTRACT

Prior to gastrulation in the mouse, all endodermal cells arise from the primitive endoderm of the blastocyst stage embryo. Primitive endoderm and its derivatives are generally referred to as extra-embryonic endoderm (ExEn) because the majority of these cells contribute to extra-embryonic lineages encompassing the visceral endoderm (VE) and the parietal endoderm (PE). During gastrulation, the definitive endoderm (DE) forms by ingression of cells from the epiblast. The DE comprises most of the cells of the gut and its accessory organs. Despite their different origins and fates, there is a surprising amount of overlap in marker expression between the ExEn and DE, making it difficult to distinguish between these cell types by marker analysis. This is significant for two main reasons. First, because endodermal organs, such as the liver and pancreas, play important physiological roles in adult animals, much experimental effort has been directed in recent years toward the establishment of protocols for the efficient derivation of endodermal cell types in vitro. Conversely, factors secreted by the VE play pivotal roles that cannot be attributed to the DE in early axis formation, heart formation and the patterning of the anterior nervous system. Thus, efforts in both of these areas have been hampered by a lack of markers that clearly distinguish between ExEn and DE. To further understand the ExEn we have undertaken a comparative analysis of three ExEn-like cell lines (END2, PYS2 and XEN). PYS2 cells are derived from embryonal carcinomas (EC) of 129 strain mice and have been characterized as parietal endoderm-like [1], END2 cells are derived from P19 ECs and described as visceral endoderm-like, while XEN cells are derived from blastocyst stage embryos and are described as primitive endoderm-like. Our analysis suggests that none of these cell lines represent a bona fide single in vivo lineage. Both PYS2 and XEN cells represent mixed populations expressing markers for several ExEn lineages. Conversely END2 cells, which were previously characterized as VE-like, fail to express many markers that are widely expressed in the VE, but instead express markers for only a subset of the VE, the anterior visceral endoderm. In addition END2 cells also express markers for the PE. We extended these observations with microarray analysis which was used to probe and refine previously published data sets of genes proposed to distinguish between DE and VE. Finally, genome-wide pathway analysis revealed that SMAD-independent TGFbeta signaling through a TAK1/p38/JNK or TAK1/NLK pathway may represent one mode of intracellular signaling shared by all three of these lines, and suggests that factors downstream of these pathways may mediate some functions of the ExEn. These studies represent the first step in the development of XEN cells as a powerful molecular genetic tool to study the endodermal signals that mediate the important developmental functions of the extra-embryonic endoderm. Our data refine our current knowledge of markers that distinguish various subtypes of endoderm. In addition, pathway analysis suggests that the ExEn may mediate some of its functions through a non-classical MAP Kinase signaling pathway downstream of TAK1.


Subject(s)
Endoderm/cytology , Animals , Biomarkers/metabolism , Cell Line , Embryo, Mammalian/cytology , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Gene Expression Profiling , MAP Kinase Signaling System , Mice , Oligonucleotide Array Sequence Analysis
18.
Article in English | MEDLINE | ID: mdl-20836001

ABSTRACT

The emergence of techniques to study developmental processes using systems biology approaches offers exciting possibilities for the developmental biologist. In particular cardiac lineage selection may be particularly amenable to these types of studies since the heart is the first fully functional organ to form in vertebrates. However there are many technical obstacles that need to be overcome for these studies to proceed. Here we present a brief overview of cardiomyocyte lineage deterimination and discuss how different aspects of this process either benefit from or present unique challenges for the development of systems biology approaches.


Subject(s)
Myocardium/cytology , Myocytes, Cardiac/cytology , Systems Biology , Animals , Cell Lineage , Humans , Models, Cardiovascular
19.
Dev Biol ; 303(1): 57-65, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17123501

ABSTRACT

The TGFbeta family member Nodal has been implicated in heart induction through misexpression of a dominant negative version of the type I Nodal receptor (Alk4) and targeted deletion of the co-receptor Cripto in murine ESCs and mouse embryos; however, whether Nodal acts directly or indirectly to induce heart tissue or interacts with other signaling molecules or pathways remained unclear. Here we present Xenopus embryological studies demonstrating an unforeseen role for the DAN family protein Cerberus within presumptive foregut endoderm as essential for differentiation of cardiac mesoderm in response to Nodal. Ectopic activation of Nodal signaling in non-cardiogenic ventroposterior mesendoderm, either by misexpression of the Nodal homologue XNr1 together with Cripto or by a constitutively active Alk4 (caAlk4), induced both cardiac markers and Cerberus. Mosaic lineage tracing studies revealed that Nodal/Cripto and caAlk4 induced cardiac markers cell non-autonomously, thus supporting the idea that Cerberus or another diffusible factor is an essential mediator of Nodal-induced cardiogenesis. Cerberus alone was found sufficient to initiate cardiogenesis at a distance from its site of synthesis. Conversely, morpholino-mediated specific knockdown of Cerberus reduced both endogenous cardiomyogenesis and ectopic heart induction resulting from misactivation of Nodal/Cripto signaling. Since the specific knockdown of Cerberus did not abrogate heart induction by the Wnt antagonist Dkk1, Nodal/Cripto and Wnt antagonists appear to initiate cardiogenesis through distinct pathways. This idea was further supported by the combinatorial effect of morpholino-medicated knockdown of Cerberus and Hex, which is required for Dkk1-induced cardiogenesis, and the differential roles of essential downstream effectors: Nodal pathway activation did not induce the transcriptional repressor Hex while Dkk-1 did not induce Cerberus. These studies demonstrated that cardiogenesis in mesoderm depends on Nodal-mediated induction of Cerberus in underlying endoderm, and that this pathway functions in a pathway parallel to cardiogenesis initiated through the induction of Hex by Wnt antagonists. Both pathways operate in endoderm to initiate cardiogenesis in overlying mesoderm.


Subject(s)
Cell Differentiation/physiology , Embryonic Induction/physiology , Heart/embryology , Intercellular Signaling Peptides and Proteins/metabolism , Mesoderm/physiology , Transforming Growth Factor beta/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , Cell Lineage/physiology , DNA Primers , In Situ Hybridization , Intercellular Signaling Peptides and Proteins/genetics , Nodal Protein , Reverse Transcriptase Polymerase Chain Reaction , Xenopus Proteins/genetics
20.
Ann N Y Acad Sci ; 1080: 85-96, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17132777

ABSTRACT

We have characterized two signaling pathways that induce heart tissue during embryonic development. The first is initiated by the Wnt antagonist Dickkopf1 (Dkk1) and involves the homeodomain transcription factor Hex. Other Wnt antagonists are less effective and the potency of Dkk1 might be due to synergy between Wnt antagonizing and another, novel activity emanating from its amino terminal cysteine-rich domain. The second signal is initiated by Nodal and its co-receptor Cripto. Importantly, both the Dkk1/Wnt antagonism and Nodal pathways act on the endoderm that underlies the future heart to control secretion of diffusible factors that induce cardiogenesis in adjacent mesoderm. In this article, we summarize data that Dkk1 induces cardiogenic differentiation cell non-autonomously through the action of the homeodomain transcription factor Hex. We also discuss recent data showing that Nodal also acts indirectly through stimulation of the secreted protein Cerberus, which is a member of the differential-screening selected aberrant in neuroblastoma (DAN) family of secreted proteins. Finally, we present the model that signaling from Dkk1 regulates novel activities, in addition to Wnt antagonism, which are essential for progression beyond initiation of cardiogenesis to control later stages of cardiomyocyte differentiation and myocardial tissue organization.


Subject(s)
Embryonic Induction , Heart/embryology , Animals , Humans , Intercellular Signaling Peptides and Proteins/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...