Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nature ; 406(6799): 959-64, 2000 Aug 31.
Article in English | MEDLINE | ID: mdl-10984043

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.


Subject(s)
Genome, Bacterial , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , DNA, Bacterial , Drug Resistance, Microbial , Gene Expression Regulation, Bacterial , Humans , Molecular Sequence Data , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/physiology , Sequence Analysis, DNA , Species Specificity
2.
Antimicrob Agents Chemother ; 43(12): 2975-83, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10582892

ABSTRACT

Pseudomonas aeruginosa can employ many distinct mechanisms of resistance to aminoglycoside antibiotics; however, in cystic fibrosis patients, more than 90% of aminoglycoside-resistant P. aeruginosa isolates are of the impermeability phenotype. The precise molecular mechanisms that produce aminoglycoside impermeability-type resistance are yet to be elucidated. A subtractive hybridization technique was used to reveal gene expression differences between PAO1 and isogenic, spontaneous aminoglycoside-resistant mutants of the impermeability phenotype. Among the many genes found to be up-regulated in these laboratory mutants were the amrAB genes encoding a recently discovered efflux system. The amrAB genes appear to be the same as the recently described mexXY genes; however, the resistance profile that we see in P. aeruginosa is very different from that described for Escherichia coli with mexXY. Direct evidence for AmrAB involvement in aminoglycoside resistance was provided by the deletion of amrB in the PAO1-derived laboratory mutant, which resulted in the restoration of aminoglycoside sensitivity to a level nearly identical to that of the parent strain. Furthermore, transcription of the amrAB genes was shown to be up-regulated in P. aeruginosa clinical isolates displaying the impermeability phenotype compared to a genotypically matched sensitive clinical isolate from the same patient. This suggests the possibility that AmrAB-mediated efflux is a clinically relevant mechanism of aminoglycoside resistance. Although it is unlikely that hyperexpression of AmrAB is the sole mechanism conferring the impermeability phenotype, we believe that the Amr efflux system can contribute to a complex interaction of molecular events resulting in the aminoglycoside impermeability-type resistance phenotype.


Subject(s)
Anti-Bacterial Agents/metabolism , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Blotting, Southern , Chromosome Mapping , Culture Media , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Drug Resistance, Microbial , Electrophoresis, Polyacrylamide Gel , Humans , Microbial Sensitivity Tests , Mutation/genetics , Permeability , Phenotype , Plasmids/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Reverse Transcriptase Polymerase Chain Reaction , Tobramycin/pharmacology , Transcriptional Activation/physiology , Up-Regulation/drug effects , Up-Regulation/genetics
3.
J Mol Microbiol Biotechnol ; 1(2): 289-93, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10943558

ABSTRACT

We herein describe all genes encoding constituents of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in the 6Mbp genome of the opportunistic human pathogen, Pseudomonas aeruginosa. Only four gene clusters were found to encode identifiable PTS homologues. These genes clusters encode novel multidomain proteins, two complete sugar-specific PTS phosphoryl transfer chains for the metabolism of fructose and N-acetylglucosamine, and a complex regulatory system that may function to coordinate carbon and nitrogen metabolism. No previously characterized organism has been shown to exhibit such a novel and restricted complement of PTS proteins.


Subject(s)
Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Pseudomonas aeruginosa/enzymology , Genome, Bacterial , Humans , Multigene Family , Operon , Phosphotransferases (Nitrogenous Group Acceptor)/genetics , Pseudomonas aeruginosa/genetics
4.
Mol Microbiol ; 30(2): 393-404, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9791183

ABSTRACT

The Gram-positive bacterium Staphylococcus aureus infects diverse tissues and causes a wide spectrum of diseases, suggesting that it possesses a repertoire of distinct molecular mechanisms promoting bacterial survival in disparate in vivo environments. Signature-tag transposon mutagenesis screening of a 1520-member library identified numerous S. aureus genetic loci affecting growth and survival in four complementary animal infection models including mouse abscess, bacteraemia and wound and rabbit endocarditis. Of a total of 237 in vivo attenuated mutants identified by the murine models, less than 10% showed attenuation in all three models, emphasizing the advantage of screening in diverse disease environments. The largest gene class identified by these analyses encoded peptide and amino acid transporters, some of which were important for S. aureus survival in all animal infection models tested. The identification of staphylococcal loci affecting growth, persistence and virulence in multiple tissue environments provides insight into the complexities of human infection and on the molecular mechanisms that could be targeted by new antibacterial therapies.


Subject(s)
Bacterial Proteins , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Bacteremia/microbiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Division/genetics , Disease Models, Animal , Endocarditis/microbiology , Gene Library , Mice , Mice, Inbred BALB C , Mice, Inbred Strains , Molecular Sequence Data , Mutagenesis , Mutation , Rabbits , Staphylococcus aureus/growth & development , Virulence , Wounds and Injuries/microbiology
5.
Infect Immun ; 66(2): 567-72, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9453610

ABSTRACT

Staphylococcus aureus is an important pathogen of humans and other animals, causing bacteremia, abscesses, endocarditis, and other infectious syndromes. A signature-tagged mutagenesis (STM) system was adapted for use in studying the genes required for in vivo survival of S. aureus. An STM library was ultimately created in S. aureus RN6390, with Tn917 being used to create the transposon mutations. Pools of S. aureus RN6390 mutants were screened in mouse abscess, bacteremia, and wound infection models for growth attenuation after in vivo passage. One of the mutants that was identified displayed marked attenuation following large-pool screening in all three animal models, which was confirmed in bacteremia and endocarditis models of infection with a smaller pool of mutants. Sequence analysis of the entire open reading frame showed a 99% identity to the high-affinity proline permease (putP) gene characterized in another strain of S. aureus. In wound and murine abscess infection models, the putP mutant was approximately 10-fold more attenuated than was wild-type strain RN6390. Another S. aureus strain transduced with the putP mutation also displayed an attenuated phenotype after passage in the wound model. A [3H]proline uptake assay showed that less proline was specifically transported into the putP mutant than into strain RN6390. The reduced viability of the bacteria possessing the mutation in the S. aureus high-affinity proline permease suggests that proline scavenging by the bacteria is important for in vivo growth and proliferation and that analogs of proline may serve as potential antistaphylococcal therapeutic agents.


Subject(s)
Amino Acid Transport Systems, Neutral , Membrane Transport Proteins/physiology , Staphylococcus aureus/physiology , Animals , DNA Transposable Elements , Mice , Mice, Inbred C57BL , Mutation , Proline/metabolism , Rabbits
6.
Proc Natl Acad Sci U S A ; 86(21): 8507-11, 1989 Nov.
Article in English | MEDLINE | ID: mdl-2510167

ABSTRACT

We demonstrate that murine myeloma cells can efficiently mediate homologous recombination. The murine myeloma cell line J558L was shown to appropriately recombine two transfected DNA molecules in approximately 30% of cells that received and integrated intact copies of both molecules. This activity was then exploited to direct major reconstructions of an endogenous locus within a hybridoma cell line. Production of antigen-specific chimeric heavy chain was achieved by targeting the human IgG1 heavy chain constant region (C gamma 1) exons to the genomic heavy chain locus of a hybridoma cell line secreting antibody specific for a human tumor-associated antigen. The frequency of productive genomic recombinations was approximately 1 in 200 transfectants, with accumulation of the chimeric protein reaching greater than 20 micrograms/ml in culture supernatants.


Subject(s)
Chimera , Genes, Immunoglobulin , Hybridomas/immunology , Immunoglobulin G/genetics , Immunoglobulin Heavy Chains/genetics , Recombination, Genetic , Animals , Antibody-Dependent Cell Cytotoxicity , Blotting, Western , Cell Line , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Plasmacytoma , Restriction Mapping , Transfection
7.
Cell ; 44(3): 419-28, 1986 Feb 14.
Article in English | MEDLINE | ID: mdl-3002636

ABSTRACT

We corrected a defective gene residing in the chromosome of a mammalian cell by injecting into the nucleus copies of the same gene carrying a different mutation. We determined how the number, the arrangement, and the chromosomal position of the integrated gene, as well as the number of injected molecules influence the gene-targeting frequency. Recombination between the newly introduced DNA and its chromosomal homolog occurred at a frequency of 1 in 10(3) cells receiving DNA. Correction events were mediated by either double reciprocal recombination or gene conversion. This resulted in sequences in the genome being replaced by sequences of the introduced DNA or, in separate experiments, sequences in the incoming DNA being replaced by chromosomal sequences. Both point mutations and deletion mutations were corrected; however, the nature of the mutation carried by the respective sequence influenced whether the integrated or injected sequence was corrected.


Subject(s)
Mutation , Recombination, Genetic , Alleles , Animals , Base Sequence , Cell Line , Chromosome Deletion , DNA Restriction Enzymes , DNA, Recombinant , Drug Resistance , Mice , Models, Genetic , Neomycin/pharmacology , Plasmids , Transfection
8.
Mol Cell Biol ; 5(1): 59-69, 1985 Jan.
Article in English | MEDLINE | ID: mdl-2984556

ABSTRACT

We have examined the mechanism of homologous recombination between plasmid molecules coinjected into cultured mammalian cells. Cell lines containing recombinant DNA molecules were obtained by selecting for the reconstruction of a functional Neor gene from two plasmids that bear different amber mutations in the Neor gene. In addition, these plasmids contain restriction-length polymorphisms within and near the Neor gene. These polymorphisms did not confer a selectable phenotype but were used to identify and categorize selected and nonselected recombinant DNA molecules. The striking conclusion from this analysis is that the predominant mechanism for the exchange of information between coinjected plasmid molecules over short distances (i.e., less than 1 kilobase) proceeds via nonreciprocal homologous recombination. The frequency of homologous recombination between coinjected plasmid molecules in cultured mammalian cells is extremely high, approaching unity. We demonstrate that this high frequency requires neither a high input of plasmid molecules per cell nor a localized high concentration of plasmid DNA within the nucleus. Thus, it appears that plasmid molecules, once introduced into the nucleus, have no difficulty seeking each other out and participating in homologous recombination even in the presence of a vast excess of host DNA sequences. Finally, we show that most of the homologous recombination events occur within a 1-h interval after the introduction of plasmid DNA into the cell nucleus.


Subject(s)
DNA/genetics , Plasmids , Recombination, Genetic , Animals , Cells, Cultured , DNA Restriction Enzymes , Kinetics
9.
Mol Cell Biol ; 5(1): 70-4, 1985 Jan.
Article in English | MEDLINE | ID: mdl-3982420

ABSTRACT

Heteroduplexes were prepared from two plasmids, pRH4-14/TK and pRH5-8/TK, containing different amber mutations in the neomycin resistance gene (Neor). The Neor gene was engineered to be expressed in both bacterial and mammalian cells. A functional Neor gene conferred kanamycin resistance to bacteria and resistance to the drug G418 to mammalian cells. In addition, the plasmids contained restriction site polymorphisms which did not confer a selectable phenotype but were used to follow the pattern of correction of mismatched bases in the heteroduplexes. In a direct comparison of the efficiency of transforming mouse LMtk- cells to G418r, the injection of heteroduplexes of pRH4-14/TK-pRH5-8/TK was 10-fold more efficient than the coinjection of pRH4-14/TK and pRH5-8/TK linear plasmid DNA. In fact, injection of 5 to 10 molecules of heteroduplex DNA per cell was as efficient in transforming LMtk- cells to G418r as the injection of 5 to 10 molecules of linear plasmid DNA per cell containing a wild-type Neor gene. To determine the pattern of mismatch repair of the injected heteroduplexes, plasmids were "rescued" from the G418r cell lines. From this analysis we conclude that the generation of wild-type Neor genes from heteroduplex DNA proceeds directly by correction of the mismatched bases, rather than by alternative mechanisms such as recombination between the injected heteroduplexes. Our finding that a cell can efficiently correct mismatched bases when confronted with preformed heteroduplexes suggests that this experimental protocol could be used to study a wide range of DNA repair mechanisms in cultured mammalian cells.


Subject(s)
DNA Repair , Plasmids , Recombination, Genetic , Animals , Cell Nucleus/physiology , Cells, Cultured , Microinjections
10.
Mol Cell Biol ; 2(11): 1372-87, 1982 Nov.
Article in English | MEDLINE | ID: mdl-6298598

ABSTRACT

We examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene. (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk- and RAT-2tk- cells to the TK+ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. Multiple copies of the transforming gene were not scattered throughout the host genome but were integrated as a concatemer at one or a very few sites in the host chromosome. Independent transformants contained the donated genes in different chromosomes. The orientation of the gene copies within the concatemer was not random; rather, the copies were organized as tandem head-to-tail arrays. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, we were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA. Even though we demonstrated that cultured mammalian cells contain the enzymes for ligating two DNA molecules very efficiently irrespective of the sequences or topology at their ends, we found that even linear plasmid DNA was recruited into the concatemer by homologous recombination.


Subject(s)
Plasmids , Recombination, Genetic , Transformation, Genetic , Animals , Base Sequence , Cell Line , Genes, Viral , Genetic Vectors , Mice , Microinjections , Models, Genetic , Nucleic Acid Conformation , Rats , Simplexvirus/genetics , Thymidine Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...