Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Chemistry ; 30(28): e202400323, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38451060

ABSTRACT

Sensitivity enhanced dynamic nuclear polarization solid-state NMR is emerging as a powerful technique for probing the structural properties of conformationally homogenous and heterogenous biomolecular species irrespective of size at atomic resolution within their native environments. Herein we detail advancements that have made acquiring such data, specifically within the confines of intact bacterial and eukaryotic cell a reality and further discuss the type of structural information that can presently be garnered by the technique's exploitation. Subsequently, we discuss bottlenecks that have thus far curbed cellular DNP-ssNMR's broader adoption namely due a lack of sensitivity and spectral resolution. We also explore possible solutions ranging from utilization of new pulse sequences, design of better performing polarizing agents, and application of additional biochemical/ cell biological methodologies.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Bacteria/chemistry , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods
2.
Proc Natl Acad Sci U S A ; 120(49): e2311240120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38019859

ABSTRACT

High-resolution NMR spectroscopy enabled us to characterize allosteric transitions between various functional states of the dimeric Escherichia coli Lac repressor. In the absence of ligands, the dimer exists in a dynamic equilibrium between DNA-bound and inducer-bound conformations. Binding of either effector shifts this equilibrium toward either bound state. Analysis of the ternary complex between repressor, operator DNA, and inducer shows how adding the inducer results in allosteric changes that disrupt the interdomain contacts between the inducer binding and DNA binding domains and how this in turn leads to destabilization of the hinge helices and release of the Lac repressor from the operator. Based on our data, the allosteric mechanism of the induction process is in full agreement with the well-known Monod-Wyman-Changeux model.


Subject(s)
Escherichia coli Proteins , Lac Repressors/genetics , Lac Repressors/metabolism , Escherichia coli Proteins/metabolism , Allosteric Regulation/genetics , Escherichia coli/metabolism , DNA/metabolism , Protein Structure, Secondary , Lac Operon/genetics
3.
Chem Sci ; 14(36): 9892-9899, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736634

ABSTRACT

Studying the structural aspects of proteins within sub-cellular compartments is of growing interest. Dynamic nuclear polarization supported solid-state NMR (DNP-ssNMR) is uniquely suited to provide such information, but critically lacks the desired sensitivity and resolution. Here we utilize SNAPol-1, a novel biradical, to conduct DNP-ssNMR at high-magnetic fields (800 MHz/527 GHz) inside HeLa cells and isolated cell nuclei electroporated with [13C,15N] labeled ubiquitin. We report that SNAPol-1 passively diffuses and homogenously distributes within whole cells and cell nuclei providing ubiquitin spectra of high sensitivity and remarkably improved spectral resolution. For cell nuclei, physical enrichment facilitates a further 4-fold decrease in measurement time and provides an exclusive structural view of the nuclear ubiquitin pool. Taken together, these advancements enable atomic interrogation of protein conformational plasticity at atomic resolution and with sub-cellular specificity.

4.
Nat Protoc ; 16(2): 893-918, 2021 02.
Article in English | MEDLINE | ID: mdl-33442051

ABSTRACT

For a long time, solid-state nuclear magnetic resonance (ssNMR) has been employed to study complex biomolecular systems at the detailed chemical, structural, or dynamic level. Recent progress in high-resolution and high-sensitivity ssNMR, in combination with innovative sample preparation and labeling schemes, offers novel opportunities to study proteins in their native setting irrespective of the molecular tumbling rate. This protocol describes biochemical preparation schemes to obtain cellular samples of both soluble as well as insoluble or membrane-associated proteins in bacteria. To this end, the protocol is suitable for studying a protein of interest in both whole cells and in cell envelope or isolated membrane preparations. In the first stage of the procedure, an appropriate strain of Escherichia coli (DE3) is transformed with a plasmid of interest harboring the protein of interest under the control of an inducible T7 promoter. Next, the cells are adapted to grow in minimal (M9) medium. Before the growth enters stationary phase, protein expression is induced, and shortly thereafter, the native E. coli RNA polymerase is inhibited using rifampicin for targeted labeling of the protein of interest. The cells are harvested after expression and prepared for ssNMR rotor filling. In addition to conventional 13C/15N-detected ssNMR, we also outline how these preparations can be readily subjected to multidimensional ssNMR experiments using dynamic nuclear polarization (DNP) or proton (1H) detection schemes. We estimate that the entire preparative procedure until NMR experiments can be started takes 3-5 days.


Subject(s)
Isotope Labeling/methods , Magnetic Resonance Spectroscopy/methods , Proteins/physiology , Bacteria/metabolism , Escherichia coli/metabolism , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/metabolism , Protons
5.
Magn Reson (Gott) ; 2(1): 187-202, 2021.
Article in English | MEDLINE | ID: mdl-35647606

ABSTRACT

Regulation of DNA-templated processes such as gene transcription and DNA repair depend on the interaction of a wide range of proteins with the nucleosome, the fundamental building block of chromatin. Both solution and solid-state NMR spectroscopy have become an attractive approach to study the dynamics and interactions of nucleosomes, despite their high molecular weight of ~ 200 kDa. For solid-state NMR (ssNMR) studies, dilute solutions of nucleosomes are converted to a dense phase by sedimentation or precipitation. Since nucleosomes are known to self-associate, these dense phases may induce extensive interactions between nucleosomes, which could interfere with protein-binding studies. Here, we characterized the packing of nucleosomes in the dense phase created by sedimentation using NMR and small-angle X-ray scattering (SAXS) experiments. We found that nucleosome sediments are gels with variable degrees of solidity, have nucleosome concentration close to that found in crystals, and are stable for weeks under high-speed magic angle spinning (MAS). Furthermore, SAXS data recorded on recovered sediments indicate that there is no pronounced long-range ordering of nucleosomes in the sediment. Finally, we show that the sedimentation approach can also be used to study low-affinity protein interactions with the nucleosome. Together, our results give new insights into the sample characteristics of nucleosome sediments for ssNMR studies and illustrate the broad applicability of sedimentation-based NMR studies.

6.
Chempluschem ; 85(4): 760-768, 2020 04.
Article in English | MEDLINE | ID: mdl-32297474

ABSTRACT

Solution-state NMR spectroscopy has become a powerful tool to study soluble proteins in cells, provided that they tumble sufficiently fast. In addition, cryo-electron tomography (cryo-ET) has recently displayed a tremendous potential to probe structures of large proteins and assemblies in their native cellular environments. However, challenges remain to obtain atomic-level information in native cell settings for proteins that are small, disordered, or are strongly engaged in intermolecular interactions. In this Minireview, we discuss recent progress in using sensitivity enhanced solid-state NMR spectroscopy methods in the context of cellular structural biology.

7.
Angew Chem Int Ed Engl ; 58(37): 12969-12973, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31233270

ABSTRACT

Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid-state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high-sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in-cell solution-state NMR spectroscopy due to molecular size limitations.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Amino Acid Sequence , HeLa Cells , Humans , Models, Molecular , Protein Conformation , Ubiquitin/chemistry , Ubiquitination
8.
Proteins ; 87(2): 110-119, 2019 02.
Article in English | MEDLINE | ID: mdl-30417935

ABSTRACT

Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engineering and drug design. Machine learning-based methods are gaining increasing momentum in this field. Due to the limited number of experimental data, using a small number of sensitive predictive features is vital to the generalization and robustness of such machine learning methods. Here we introduce a fast and reliable predictor of binding affinity changes upon single point mutation, based on a random forest approach. Our method, iSEE, uses a limited number of interface Structure, Evolution, and Energy-based features for the prediction. iSEE achieves, using only 31 features, a high prediction performance with a Pearson correlation coefficient (PCC) of 0.80 and a root mean square error of 1.41 kcal/mol on a diverse training dataset consisting of 1102 mutations in 57 protein-protein complexes. It competes with existing state-of-the-art methods on two blind test datasets. Predictions for a new dataset of 487 mutations in 56 protein complexes from the recently published SKEMPI 2.0 database reveals that none of the current methods perform well (PCC < 0.42), although their combination does improve the predictions. Feature analysis for iSEE underlines the significance of evolutionary conservations for quantitative prediction of mutation effects. As an application example, we perform a full mutation scanning of the interface residues in the MDM2-p53 complex.


Subject(s)
Computational Biology/methods , Machine Learning , Mutation , Proteins/genetics , Binding, Competitive , Evolution, Molecular , Models, Molecular , Protein Binding , Protein Domains , Proteins/chemistry , Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Thermodynamics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Molecules ; 23(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563071

ABSTRACT

Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Amino Acid Sequence , Animals , DNA End-Joining Repair , DNA Repair , DNA-Binding Proteins/chemistry , Endonucleases/chemistry , Helix-Loop-Helix Motifs , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Signal Transduction
10.
Proc Natl Acad Sci U S A ; 114(27): 7013-7018, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28630286

ABSTRACT

Fluorophores with dynamic or controllable fluorescence emission have become essential tools for advanced imaging, such as superresolution imaging. These applications have driven the continuing development of photoactivatable or photoconvertible labels, including genetically encoded fluorescent proteins. These new probes work well but require the introduction of new labels that may interfere with the proper functioning of existing constructs and therefore require extensive functional characterization. In this work we show that the widely used red fluorescent protein mCherry can be brought to a purely chemically induced blue-fluorescent state by incubation with ß-mercaptoethanol (ßME). The molecules can be recovered to the red fluorescent state by washing out the ßME or through irradiation with violet light, with up to 80% total recovery. We show that this can be used to perform single-molecule localization microscopy (SMLM) on cells expressing mCherry, which renders this approach applicable to a very wide range of existing constructs. We performed a detailed investigation of the mechanism underlying these dynamics, using X-ray crystallography, NMR spectroscopy, and ab initio quantum-mechanical calculations. We find that the ßME-induced fluorescence quenching of mCherry occurs both via the direct addition of ßME to the chromophore and through ßME-mediated reduction of the chromophore. These results not only offer a strategy to expand SMLM imaging to a broad range of available biological models, but also present unique insights into the chemistry and functioning of a highly important class of fluorophores.


Subject(s)
Fluorescent Dyes/chemistry , Luminescent Proteins/chemistry , Microscopy, Fluorescence/instrumentation , Animals , COS Cells , Chlorocebus aethiops , Color , Crystallography, X-Ray , HeLa Cells , Humans , Light , Magnetic Resonance Spectroscopy , Mercaptoethanol/chemistry , Microscopy, Fluorescence/methods , Photochemical Processes , Quantum Theory , Reducing Agents/chemistry , Software , X-Rays , Red Fluorescent Protein
11.
J Biol Chem ; 292(7): 2842-2853, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28028171

ABSTRACT

The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.


Subject(s)
DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Binding Sites , DNA-Binding Proteins/chemistry , Dimerization , Helix-Loop-Helix Motifs , Humans , Protein Binding , Substrate Specificity
12.
Cell ; 167(5): 1241-1251.e11, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27839865

ABSTRACT

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/metabolism , Cell Line, Tumor , Epidermal Growth Factor/metabolism , ErbB Receptors/isolation & purification , Humans , Intracellular Membranes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Multimerization , Thermodynamics , Transport Vesicles/chemistry
13.
Protein Sci ; 25(9): 1722-33, 2016 09.
Article in English | MEDLINE | ID: mdl-27364543

ABSTRACT

Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two ß-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.


Subject(s)
Bacterial Proteins/chemistry , Geobacillus stearothermophilus/chemistry , Models, Molecular , Prokaryotic Initiation Factor-2/chemistry , Ribosome Subunits, Small, Bacterial/chemistry , Bacterial Proteins/metabolism , Geobacillus stearothermophilus/metabolism , Prokaryotic Initiation Factor-2/metabolism , Protein Domains , Ribosome Subunits, Small, Bacterial/metabolism
14.
J Biol Chem ; 290(33): 20541-55, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26085086

ABSTRACT

The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe(231), Leu(231) lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.


Subject(s)
Cockayne Syndrome/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Point Mutation , Amino Acid Sequence , DNA-Binding Proteins/chemistry , Dimerization , Endonucleases/chemistry , Humans , Models, Chemical , Molecular Sequence Data , Sequence Homology, Amino Acid
15.
J Biomol NMR ; 62(2): 199-208, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25956570

ABSTRACT

Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli Proteins/chemistry , Membrane Transport Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Potassium Channels/chemistry , Cloning, Molecular , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Conformation , Proteolipids/chemistry , Recombinant Proteins/chemistry , Rifampin/pharmacology , Sensitivity and Specificity , Streptomyces lividans/genetics
16.
Nat Methods ; 12(7): 649-52, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25984698

ABSTRACT

Studying biomolecules at atomic resolution in their native environment is the ultimate aim of structural biology. We investigated the bacterial type IV secretion system core complex (T4SScc) by cellular dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy to validate a structural model previously generated by combining in vitro and in silico data. Our results indicate that T4SScc is well folded in the cellular setting, revealing protein regions that had been elusive when studied in vitro.


Subject(s)
Bacterial Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Protein Folding
17.
Methods Enzymol ; 557: 307-28, 2015.
Article in English | MEDLINE | ID: mdl-25950971

ABSTRACT

Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this contribution, we discuss experimental aspects of such studies starting with protein expression and labeling, leading to membrane protein isolation or to membrane proteins in a cellular environment. We show that optimized procedures can depend on aspects such as the achieved levels of expression, the stability of the protein during purification or proper refolding. Dealing with native membrane samples, such as isolated cellular membranes, can alleviate or entirely remove such biochemical challenges. Subsequently, we outline ssNMR experiments that involve the use of magic-angle-spinning and can be used to study membrane protein structure and their functional aspects. We pay specific attention to spectroscopic issues such as sensitivity and spectral resolution. The latter aspect can be controlled using a combination of tailored preparation procedures with solid-state NMR experiments that simplify the spectral analysis using specific filtering and correlation methods. Such approaches have already provided access to obtain structural views of membrane proteins and study their function in lipid bilayers. Ongoing developments in sample preparation and NMR methodology, in particular in using hyperpolarization or proton-detection schemes, offer additional opportunities to study membrane proteins close to their cellular function. These considerations suggest a further increase in the potential of using solid-state NMR in the context of prokaryotic or eukaryotic membrane protein systems in the near future.


Subject(s)
Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Animals , Detergents/chemistry , Humans , Lipid Bilayers/chemistry , Membrane Proteins/isolation & purification , Protein Structure, Secondary , Proteolipids/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Solubility
18.
Nucleic Acids Res ; 42(13): 8705-18, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24957607

ABSTRACT

Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM-RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.


Subject(s)
Nicotiana , Plant Proteins/chemistry , RNA-Binding Proteins/chemistry , Amino Acid Sequence , Conserved Sequence , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Nucleic Acid Denaturation , Plant Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , RNA/chemistry , RNA/metabolism , RNA-Binding Proteins/metabolism , Static Electricity
19.
J Mol Biol ; 426(14): 2632-52, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24768922

ABSTRACT

Protein-protein complexes orchestrate most cellular processes such as transcription, signal transduction and apoptosis. The factors governing their affinity remain elusive however, especially when it comes to describing dissociation rates (koff). Here we demonstrate that, next to direct contributions from the interface, the non-interacting surface (NIS) also plays an important role in binding affinity, especially polar and charged residues. Their percentage on the NIS is conserved over orthologous complexes indicating an evolutionary selection pressure. Their effect on binding affinity can be explained by long-range electrostatic contributions and surface-solvent interactions that are known to determine the local frustration of the protein complex surface. Including these in a simple model significantly improves the affinity prediction of protein complexes from structural models. The impact of mutations outside the interacting surface on binding affinity is supported by experimental alanine scanning mutagenesis data. These results enable the development of more sophisticated and integrated biophysical models of binding affinity and open new directions in experimental control and modulation of biomolecular interactions.


Subject(s)
Protein Binding , Proteins/chemistry , Proteins/metabolism , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Static Electricity , Water
20.
Nucleic Acids Res ; 41(13): 6739-49, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23661679

ABSTRACT

To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.


Subject(s)
DNA-Binding Proteins/chemistry , DNA/metabolism , Amino Acid Sequence , DNA/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fanconi Anemia Complementation Group Proteins , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis , Protein Binding , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...