Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Arch Occup Environ Health ; 95(1): 249-258, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34089351

ABSTRACT

PURPOSE: Over the last few decades, a global increase in both cold and heat extremes has been observed with significant impacts on human mortality. Although it is well-identified that older individuals (> 65 years) are most prone to temperature-related mortality, there is no consensus on the effect of sex. The current study investigated if sex differences in temperature-related mortality exist in the Netherlands. METHODS: Twenty-three-year ambient temperature data of the Netherlands were combined with daily mortality data which were subdivided into sex and three age classes (< 65 years, 65-80 years, ≥ 80 years). Distributed lag non-linear models were used to analyze the effect of ambient temperature on mortality and determine sex differences in mortality attributable to the cold and heat, which is defined as mean daily temperatures below and above the Minimum Mortality Temperature, respectively. RESULTS: Attributable fractions in the heat were higher in females, especially in the oldest group under extreme heat (≥ 97.5th percentile), whilst no sex differences were found in the cold. Cold- and heat-related mortality was most prominent in the oldest age group (≥ 80 years) and to a smaller extent in the age group between 65-80 years. In the age group < 65 years temperature-related mortality was only significant for males in the heat. CONCLUSION: Mortality in the Netherlands represents the typical V- or hockey-stick shaped curve with a higher daily mortality in the cold and heat than at milder temperatures in both males and females, especially in the age group ≥ 80 years. Heat-related mortality was higher in females than in males, especially in the oldest age group (≥ 80 years) under extreme heat, whilst in the cold no sex differences were found. The underlying cause may be of physiological or behavioral nature, but more research is necessary.


Subject(s)
Cold Temperature , Sex Characteristics , Aged , Aged, 80 and over , Female , Hot Temperature , Humans , Male , Mortality , Netherlands/epidemiology , Temperature
2.
Temperature (Austin) ; 8(3): 254-261, 2021.
Article in English | MEDLINE | ID: mdl-34485619

ABSTRACT

Due to time and logistical constraints sweat samples cannot always be analyzed immediately. The purpose of this study was to investigate the effect of storage temperature and duration on sweat electrolyte and metabolite concentrations. Twelve participants cycled for 60 min at 40 W.m-2 in 33°C and 65% RH. Using the absorbent patch technique, six sweat samples were collected from the posterior torso. Sweat from the six samples was mixed, divided again over six samples and placed in sealed vials. Sweat sodium, chloride, potassium, ammonia, lactate and urea concentrations in one sample were determined immediately. Two samples were stored at room temperature (~25°C, 42% RH) for 7 and 28 days respectively. The remaining samples were frozen at -20°C for 1 h, 7 or 28 days respectively before analysis. Sweat sodium, chloride, potassium and urea concentrations were not affected by storage temperature and duration. Sweat lactate decreased (-1.8 ± 1.8 mmol.L-1, P = 0.007) and ammonia concentrations increased (5.1 ± 3.9 mmol.L-1, P = 0.017) after storage for 28 days at 25°C only. The storage temperature and duration did not affect sodium, chloride, potassium and urea concentrations. However, sweat samples should not be stored for longer than 7 days at 25°C to obtain reliable sweat lactate and ammonia concentrations. When samples are frozen at -20°C, the storage duration could be extended to 28 days for these components.

3.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R295-R302, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34259026

ABSTRACT

Critical environmental limits are environmental thresholds above which heat gain exceeds heat loss and body core temperature (Tc) cannot be maintained at equilibrium. Those limits can be represented as critical wet-bulb globe temperature (WBGTcrit), a validated index that represents the overall thermal environment. Little is known about WBGTcrit at rest and during low-to-moderate intensity exercise, or sex differences in WBGTcrit, in unacclimated young adults. The following hypotheses were tested: 1) WBGTcrit progressively decreases as metabolic heat production (Mnet) increases, 2) no sex differences in WBGTcrit occur at rest, and 3) WBGTcrit is lower during absolute-intensity exercise but higher at relative intensities in women than in men. Thirty-six participants [19 men (M)/17 women (W); 23 ± 4 yr] were tested at rest, during light, absolute-intensity exercise (10 W), or during moderate, relative-intensity exercise [30% maximal oxygen consumption (V̇o2max)] in an environmental chamber. Dry-bulb temperature was clamped as relative humidity or ambient water vapor pressure was increased until an upward inflection was observed in Tc (rectal or esophageal temperature). Sex-aggregated WBGTcrit was lower during 10 W (32.9°C ± 1.7°C, P < 0.0001) and 30% V̇o2max (31.6°C ± 1.1°C, P < 0.0001) exercise versus at rest (35.3°C ± 0.8°C), and lower at 30% V̇o2max versus 10 W (P = 0.01). WBGTcrit was similar between sexes at rest (35.6°C ± 0.8°C vs. 35.0°C ± 0.8°C, P = 0.83), but lower during 10 W (31.9°C ± 1.7°C vs. 34.1°C ± 0.3°C, P < 0.01) and higher during 30% V̇o2max (32.4°C ± 0.8°C vs. 30.8°C ± 0.9°C, P = 0.03) exercise in women versus men. These findings suggest that WBGTcrit decreases as Mnet increases, no sex differences occur in WBGTcrit at rest, and sex differences in WBGTcrit during exercise depend on absolute versus relative intensities.


Subject(s)
Exercise/physiology , Hot Temperature , Sex Characteristics , Thermogenesis/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Female , Humans , Humidity , Male , Young Adult
4.
Physiol Meas ; 42(4)2021 05 12.
Article in English | MEDLINE | ID: mdl-33784659

ABSTRACT

Objective. By attaching absorbent patches to the skin to collect sweat, an increase in local skin temperature (Tsk) underneath the patches seems unavoidable. Yet this effect has not been quantified. The present study investigates the effect of absorbent patch application on localTskunderneath.Approach. Ten healthy participants cycled for 60 min at an exercise intensity relative to their body surface area (40 W.m-2) in three environmental conditions (temperate: 25 °C 45% RH, hot-humid: 33 °C 65% RH and hot-dry: 40 °C 30% RH). The effect of short sweat sampling (i.e. from min 25-30 to min 55-60) onTskwas examined on the right scapula.Tskof the left scapula served as control. The effect of continuous sweat sampling (i.e. four consecutive 15 min periods) onTskwas examined on the right upper arm.Tskof the left upper arm served as control.Main results. Neither short nor continuous application of absorbent sweat patches affectedTskunderneath the patches in the hot-humid and hot-dry condition (P > 0.05). In the temperate condition, continuous application led to a significant increase inTskunderneath the patches during the first and second minute. This increase remained throughout the experiment (1.8 ± 0.6 °C;P < 0.001). Short application of sweat patches did not affect the localTskunderneath (P > 0.05) in the temperate condition.Significance. To avoid a significant increase in localTskunderneath sweat patches, continuous application should be prevented in, especially, a temperate condition. Timely removal of sweat patches should be taken into account during longer periods of collecting sweat in field or laboratories settings.


Subject(s)
Hot Temperature , Skin Temperature , Body Temperature , Body Temperature Regulation , Humans , Skin , Sweat , Sweating
5.
Animals (Basel) ; 10(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947831

ABSTRACT

In this study, we examined the effects of pre-cooling on thermophysiological responses in horses exercising in moderate environmental conditions (average wet bulb globe temperature: 18.5 ± 3.8 °C). Ten international eventing horses performed moderate intensity canter training on two separate days, and were either pre-cooled with cold-water rinsing (5-9 °C for 8 ± 3 min; cooling) or were not pre-cooled (control). We determined velocity (V), heart rate (HR), rectal temperature (Tre,), shoulder and rump skin temperature (Tshoulder and Trump), plasma lactate concentration (LA), gross sweat loss (GSL), and local sweat rate (LSR), as well as sweat sodium, chloride and potassium concentrations. The effect of pre-cooling on Tre was dependent on time; after 20 min of exercise the effect was the largest (estimate: 0.990, 95% likelihood confidence intervals (95% CI): 0.987, 0.993) compared to the control condition, resulting in a lower median Tre of 0.3 °C. Skin temperature was also affected by pre-cooling compared to the control condition (Tshoulder: -3.30 °C, 95% CI: -3.739, -2.867; Trump: -2.31 °C, 95% CI: -2.661, -1.967). V, HR, LA, GSL, LSR and sweat composition were not affected by pre-cooling. In conclusion, pre-cooling by cold-water rinsing could increase the margin for heat storage, allowing a longer exercise time before a critical Tre is reached and, therefore, could potentially improve equine welfare during competition.

6.
Front Physiol ; 11: 225, 2020.
Article in English | MEDLINE | ID: mdl-32256386

ABSTRACT

It is essentially unknown how humans adapt or will adapt to heat stress caused by climate change over a long-term interval. A possible indicator of adaptation may be the minimum mortality temperature (MMT), which is defined as the mean daily temperature at which the lowest mortality occurs. Another possible indicator may be the heat sensitivity, i.e., the percentage change in mortality per 1°C above the MMT threshold, or heat attributable fraction (AF), i.e., the percentage relative excess mortality above MMT. We estimated MMT and heat sensitivity/AF over a period of 23 years for older adults (≥65 years) in the Netherlands using three commonly used methods. These methods are segmented Poisson regression (SEG), constrained segmented distributed lag models (CSDL), and distributed lag non-linear models (DLNM). The mean ambient temperature increased by 0.03°C/year over the 23 year period. The calculated mean MMT over the 23-year period differed considerably between methods [16.4 ± 1.2°C (SE) (SEG), 18.9 ± 0.5°C (CSDL), and 15.3 ± 0.4°C DLNM]. MMT increased during the observed period according to CSDL (0.11 ± 0.05°C/year) and DLNM (0.15 ± 0.02°C/year), but not with SEG. The heat sensitivity, however, decreased for the latter method (0.06%/°C/year) and did not change for CSDL. Heat AF was calculated for the DLNM method and decreased with 0.07%/year. Based on these results we conclude that the susceptibility of humans to heat decreases over time, regardless which method was used, because human adaptation is shown by either an increase in MMT (CSDL and DLNM) or a decrease in heat sensitivity for unchanged MMT (SEG). Future studies should focus on what factors (e.g., physiological, behavioral, technological, or infrastructural adaptations) influence human adaptation the most, so it can be promoted through adaptation policies. Furthermore, future studies should keep in mind that the employed method influences the calculated MMT, which hampers comparability between studies.

8.
Sci Data ; 6(1): 289, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772199

ABSTRACT

Thermal discomfort is one of the main triggers for occupants' interactions with components of the built environment such as adjustments of thermostats and/or opening windows and strongly related to the energy use in buildings. Understanding causes for thermal (dis-)comfort is crucial for design and operation of any type of building. The assessment of human thermal perception through rating scales, for example in post-occupancy studies, has been applied for several decades; however, long-existing assumptions related to these rating scales had been questioned by several researchers. The aim of this study was to gain deeper knowledge on contextual influences on the interpretation of thermal perception scales and their verbal anchors by survey participants. A questionnaire was designed and consequently applied in 21 language versions. These surveys were conducted in 57 cities in 30 countries resulting in a dataset containing responses from 8225 participants. The database offers potential for further analysis in the areas of building design and operation, psycho-physical relationships between human perception and the built environment, and linguistic analyses.


Subject(s)
Built Environment , Thermosensing , Humans , Surveys and Questionnaires , Temperature
9.
NeuroRehabilitation ; 40(4): 459-471, 2017.
Article in English | MEDLINE | ID: mdl-28211820

ABSTRACT

BACKGROUND: Strength training can increase function in individuals with stroke. However it is unclear which type of strength training is most effective and feasible. OBJECTIVE: To assess the effect and feasibility of an intervention combining eccentric and task-oriented strength training in individuals with chronic stroke. METHODS: Eleven participants were randomly assigned to a group first receiving four weeks of eccentric strength training and then four weeks of task-oriented strength training (EST-TOST) or vice versa (TOST-EST). Strength and upper limb function were administered with a hand-held dynamometer (HHD) and the Action Research Arm Test (ARAT) respectively. Feasibility was evaluated with the Intrinsic Motivation Inventory (IMI), the adherence and drop-out rate. RESULTS: Significant increases were found in ARAT score (mean difference 7.3; p < 0.05) and in shoulder and elbow strength (mean difference respectively 23.96 N; p < 0.001 and 27.41 N; p < 0.003). Participants rated both EST and TOST with 81% on the IMI, the adherence rate was high and there was one drop-out. CONCLUSION: The results of this study show that a combination of eccentric and task-oriented strength training is an effective and feasible training method to increase function and strength in individuals with chronic stroke.


Subject(s)
Resistance Training/methods , Stroke Rehabilitation/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Resistance Training/adverse effects , Stroke/physiopathology , Stroke Rehabilitation/adverse effects , Upper Extremity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...