Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 104(13): 132003, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481874

ABSTRACT

By using a single formalism to handle charm, strange, and light valence quarks in full lattice QCD for the first time, we are able to determine ratios of quark masses to 1%. For m(c)/m(s) we obtain 11.85(16), an order of magnitude more precise than the current PDG average. Combined with 1% determinations of the charm quark mass now possible this gives m(s)(2 GeV)=92.4(1.5) MeV. The MILC result for m(s)/m(l)=27.2(3) yields m(l)(2 GeV)=3.40(7) MeV for the average of u and d quark masses.

2.
Phys Rev Lett ; 104(2): 022001, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20366587

ABSTRACT

By using the highly improved staggered quark formalism to handle charm, strange, and light valence quarks in full lattice QCD, and NRQCD to handle bottom valence quarks, we are able to determine accurately ratios of the B meson vector-pseudoscalar mass splittings, in particular, [m(B{c}{*})-m(B{c})]/[m(B{s}{*})-m(B{s})]. We find this ratio to be 1.15(15), showing the "light" quark mass dependence of this splitting to be very small. Hence we predict m(B{c}{*})=6.330(7)(2)(6) GeV, where the first two errors are from the lattice calculation and the third from existing experiment. This is the most accurate prediction of a gold-plated hadron mass from lattice QCD to date.

3.
Phys Rev Lett ; 100(6): 062002, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18352458

ABSTRACT

We determine D and D(s) decay constants from lattice QCD with 2% errors, 4 times better than experiment and previous theory: f(D(s))=241(3) MeV, f(D)=207(4) MeV, and fD(s))/f(D)=1.164(11). We also obtain f(K)/f(pi)=1.189(7) and (f(D(s))/f(D))/(f(K)/f(pi))=0.979(11). Combining with experiment gives V(us)=0.2262(14) and V(cs)/V(cd) of 4.43(41). We use a highly improved quark discretization on MILC gluon fields that include realistic sea quarks, fixing the u/d, s, and c masses from the pi, K, and eta(c) meson masses. This allows a stringent test against experiment for D and D(s) masses for the first time (to within 7 MeV).

4.
Phys Rev Lett ; 92(2): 022001, 2004 Jan 16.
Article in English | MEDLINE | ID: mdl-14753930

ABSTRACT

The recently developed Symanzik-improved staggered-quark discretization allows unquenched lattice-QCD simulations with much smaller (and more realistic) quark masses than previously possible. To test this formalism, we compare experiment with a variety of nonperturbative calculations in QCD drawn from a restricted set of "gold-plated" quantities. We find agreement to within statistical and systematic errors of 3% or less. We discuss the implications for phenomenology and, in particular, for heavy-quark physics.

5.
Phys Rev Lett ; 93(24): 241601, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15697792

ABSTRACT

We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.

6.
Article in English | MEDLINE | ID: mdl-11088300

ABSTRACT

The microcanonical statistical mechanics of a set of self-gravitating particles is analyzed in a mean-field approach. In order to deal with an upper bounded entropy functional, a softened gravitational potential is used. The softening is achieved by truncating to N terms an expansion of the Newtonian potential in spherical Bessel functions. The order N is related to the softening at short distances. This regularization has the remarkable property that it allows for an exact solution of the mean-field equation. It is found that for N not too large the absolute maximum of the entropy coincides to high accuracy with the solution of the Lane-Emden equation, which determines the mean-field mass distribution for the Newtonian potential for energies larger than E(c) approximately -0.335GM(2)/R. Below this energy a collapsing phase transition, with negative specific heat, takes place. The dependence of this result on the regularizing parameter N is discussed.

7.
Phys Rev B Condens Matter ; 54(2): 930-937, 1996 Jul 01.
Article in English | MEDLINE | ID: mdl-9985360
SELECTION OF CITATIONS
SEARCH DETAIL
...