Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(11): 113602, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-37001089

ABSTRACT

We analyze the fundamental coherence limit of a nano-object with an embedded spin in a Stern-Gerlach interferometer. This limit stems from the which-path information provided by the object's rotational degrees of freedom due to the evolution of their quantum uncertainty. We show that such interferometry is straightforward in a weak magnetic field and short duration. Large wave packet separation is made possible with proper fine-tuning over long durations. This opens the door to fundamental tests of quantum theory and quantum gravity. The results and conclusions are extendable to any type of interferometry with complex objects.

2.
Sci Adv ; 7(22)2021 May.
Article in English | MEDLINE | ID: mdl-34049876

ABSTRACT

The Stern-Gerlach effect, found a century ago, has become a paradigm of quantum mechanics. Unexpectedly, until recently, there has been little evidence that the original scheme with freely propagating atoms exposed to gradients from macroscopic magnets is a fully coherent quantum process. Several theoretical studies have explained why a Stern-Gerlach interferometer is a formidable challenge. Here, we provide a detailed account of the realization of a full-loop Stern-Gerlach interferometer for single atoms and use the acquired understanding to show how this setup may be used to realize an interferometer for macroscopic objects doped with a single spin. Such a realization would open the door to a new era of fundamental probes, including the realization of previously inaccessible tests at the interface of quantum mechanics and gravity.

3.
Sci Adv ; 6(9): eaay8345, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158945

ABSTRACT

The geometric phase due to the evolution of the Hamiltonian is a central concept in quantum physics and may become advantageous for quantum technology. In noncyclic evolutions, a proposition relates the geometric phase to the area bounded by the phase-space trajectory and the shortest geodesic connecting its end points. The experimental demonstration of this geodesic rule proposition in different systems is of great interest, especially due to the potential use in quantum technology. Here, we report a previously unshown experimental confirmation of the geodesic rule for a noncyclic geometric phase by means of a spatial SU(2) matter-wave interferometer, demonstrating, with high precision, the predicted phase sign change and π jumps. We show the connection between our results and the Pancharatnam phase. Last, we point out that the geodesic rule may be applied to obtain the red shift in general relativity, enabling a new quantum tool to measure gravity.

4.
Nat Commun ; 8(1): 1241, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093453

ABSTRACT

Work is an essential concept in classical thermodynamics, and in the quantum regime, where the notion of a trajectory is not available, its definition is not trivial. For driven (but otherwise isolated) quantum systems, work can be defined as a random variable, associated with the change in the internal energy. The probability for the different values of work captures essential information describing the behaviour of the system, both in and out of thermal equilibrium. In fact, the work probability distribution is at the core of "fluctuation theorems" in quantum thermodynamics. Here we present the design and implementation of a quantum work meter operating on an ensemble of cold atoms, which are controlled by an atom chip. Our device not only directly measures work but also directly samples its probability distribution. We demonstrate the operation of this new tool and use it to verify the validity of the quantum Jarzynksi identity.

5.
J Mod Opt ; 63(18): 1840-1885, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27499585

ABSTRACT

Here we review the field of atom chips in the context of Bose-Einstein Condensates (BEC) as well as cold matter in general. Twenty years after the first realization of the BEC and 15 years after the realization of the atom chip, the latter has been found to enable extraordinary feats: from producing BECs at a rate of several per second, through the realization of matter-wave interferometry, and all the way to novel probing of surfaces and new forces. In addition, technological applications are also being intensively pursued. This review will describe these developments and more, including new ideas which have not yet been realized.

6.
Science ; 349(6253): 1205-8, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26249229

ABSTRACT

In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world.

7.
Nat Commun ; 4: 2424, 2013.
Article in English | MEDLINE | ID: mdl-24013518

ABSTRACT

In the Stern-Gerlach effect, a magnetic field gradient splits particles into spatially separated paths according to their spin projection. The idea of exploiting this effect for creating coherent momentum superpositions for matter-wave interferometry appeared shortly after its discovery, almost a century ago, but was judged to be far beyond practical reach. Here we demonstrate a viable version of this idea. Our scheme uses pulsed magnetic field gradients, generated by currents in an atom chip wire, and radio-frequency Rabi transitions between Zeeman sublevels. We transform an atomic Bose-Einstein condensate into a superposition of spatially separated propagating wavepackets and observe spatial interference fringes with a measurable phase repeatability. The method is versatile in its range of momentum transfer and the different available splitting geometries. These features make our method a good candidate for supporting a variety of future applications and fundamental studies.

8.
Phys Rev Lett ; 111(5): 053004, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952394

ABSTRACT

We analyze theoretically and experimentally the existence of a magic frequency for which the absorption of a linearly polarized light beam by a vapor of alkali-metal atoms is independent of the population distribution among the Zeeman sublevels and the angle between the beam and a magnetic field. The phenomenon originates from a peculiar cancellation of the contributions of higher moments of the atomic density matrix, and is described using the Wigner-Eckart theorem and inherent properties of Clebsch-Gordan coefficients. One important application is the robust measurement of the hyperfine population.

9.
Phys Rev Lett ; 96(17): 173601, 2006 May 05.
Article in English | MEDLINE | ID: mdl-16712295

ABSTRACT

We describe a new and distinctive interferometry in which a probe particle scatters off a superposition of locations of a single free target particle. Probe particles scattering off a single free "mirror" (in one dimension) or a single free "slit" (in two dimensions) can "swap" interference with the superposed target states. The condition for interference is loss of orthogonality of the target states and reduces, in simple examples, to transfer of orthogonality from target to probe states. We analyze experimental parameters and conditions necessary for interference to be observed.

10.
Phys Rev Lett ; 88(10): 100401, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11909331

ABSTRACT

Atoms can be trapped and guided with electromagnetic fields, using nanofabricated structures. We describe the fundamental features of an interferometer for guided matter waves, built of two combined Y-shaped beam splitters. We find that such a device is expected to exhibit high contrast fringes even in a multimode regime, analogous to a white light interferometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...