Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 11(13): 3538-3546, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-34109026

ABSTRACT

Mass spectrometry enables the in-depth structural elucidation of membrane protein complexes, which is of great interest in structural biology and drug discovery. Recent breakthroughs in this field revealed the need for design rules that allow fine-tuning the properties of detergents in solution and gas phase. Desirable features include protein charge reduction, because it helps to preserve native features of protein complexes during transfer from solution into the vacuum of a mass spectrometer. Addressing this challenge, we here present the first systematic gas-phase study of azobenzene detergents. The utility of gas-phase techniques for monitoring light-driven changes of isomer ratios and molecular properties are investigated in detail. This leads to the first azobenzene detergent that enables the native mass spectrometry analysis of membrane proteins and whose charge-reducing properties can be tuned by irradiation with light. More broadly, the presented work outlines new avenues for the high-throughput characterization of supramolecular systems and opens a new design strategy for detergents in membrane protein research.

2.
Chemphyschem ; 20(13): 1690-1697, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31074563

ABSTRACT

The ability to design amphiphiles with predictable solubility properties is of everlasting interest in supramolecular chemistry. Relevant structural parameters include the hydrophobic-hydrophilic balance and structural flexibility. In this work, we investigate the water solubility of azobenzene-based triglycerol bolaamphiphiles (TGBAs). In particular, we analyzed the structural effects of backbone hydrophobicity, flexibility, and cis/trans isomerization on the water solubility of a subset of five TGBAs. This leads to the first example of a non-ionic bolaamphiphile whose water solubility can be changed by irradiation with light. The underlying kinetics were monitored using liquid chromatography and a closer analysis of the underlying aggregation processes provides a mechanistic understanding of the light-driven dissolution process. We anticipate that the results obtained will help to engineer bolaamphiphiles with predictable solution properties in the future.

3.
J Struct Biol ; 203(3): 263-272, 2018 09.
Article in English | MEDLINE | ID: mdl-29857134

ABSTRACT

Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson's and Alzheimer's diseases. Their hallmark is the presence of a ß-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of ß-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements.


Subject(s)
Alzheimer Disease/genetics , Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Peptides/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Amyloidogenic Proteins/genetics , Amyloidogenic Proteins/ultrastructure , Cryoelectron Microscopy , Humans , Microscopy, Atomic Force , Nuclear Magnetic Resonance, Biomolecular , Peptides/genetics , Protein Domains/genetics , Protein Structure, Secondary
4.
J Am Chem Soc ; 140(1): 244-249, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29235867

ABSTRACT

The hexapeptide NFGAIL is a highly amyloidogenic peptide, derived from the human islet amyloid polypeptide (hIAPP). Recent investigations indicate that presumably soluble hIAPP oligomers are one of the cytotoxic species in type II diabetes. Here we use thioflavin T staining, transmission electron microscopy, as well as ion mobility-mass spectrometry coupled to infrared (IR) spectroscopy to study the amyloid formation mechanism and the quaternary and secondary structure of soluble NFGAIL oligomers. Our data reveal that at neutral pH NFGAIL follows a nucleation dependent mechanism to form amyloid fibrils. During the lag phase, highly polydisperse, polymorph, and compact oligomers (oligomer number n = 2-13) as well as extended intermediates (n = 4-11) are present. IR secondary structural analysis reveals that compact conformations adopt turn-like structures, whereas extended oligomers exhibit a significant amount of ß-sheet content. This agrees well with previous molecular dynamic simulations and provides direct experimental evidence that unordered off-pathway NFGAIL aggregates up to the size of at least the 13-mer as well as partially folded ß-sheet containing oligomers are coexisting.


Subject(s)
Amyloid/chemistry , Amyloid/chemical synthesis , Oligopeptides/chemistry , Benzothiazoles , Humans , Mass Spectrometry , Microscopy, Electron, Transmission , Protein Structure, Secondary , Spectrophotometry, Infrared , Thiazoles/chemistry
5.
Beilstein J Org Chem ; 13: 2869-2882, 2017.
Article in English | MEDLINE | ID: mdl-29564015

ABSTRACT

Rapid digestion by proteases limits the application of peptides as therapeutics. One strategy to increase the proteolytic stability of peptides is the modification with fluorinated amino acids. This study presents a systematic investigation of the effects of fluorinated leucine and isoleucine derivatives on the proteolytic stability of a peptide that was designed to comprise substrate specificities of different proteases. Therefore, leucine, isoleucine, and their side-chain fluorinated variants were site-specifically incorporated at different positions of this peptide resulting in a library of 13 distinct peptides. The stability of these peptides towards proteolysis by α-chymotrypsin, pepsin, proteinase K, and elastase was studied, and this process was followed by an FL-RP-HPLC assay in combination with mass spectrometry. In a few cases, we observed an exceptional increase in proteolytic stability upon introduction of the fluorine substituents. The opposite phenomenon was observed in other cases, and this may be explained by specific interactions of fluorinated residues with the respective enzyme binding sites. Noteworthy is that 5,5,5-trifluoroisoleucine is able to significantly protect peptides from proteolysis by all enzymes included in this study when positioned N-terminal to the cleavage site. These results provide valuable information for the application of fluorinated amino acids in the design of proteolytically stable peptide-based pharmaceuticals.

6.
Beilstein J Org Chem ; 12: 2462-2470, 2016.
Article in English | MEDLINE | ID: mdl-28144314

ABSTRACT

As is the case in numerous natural processes, enzymatic phosphorylation can be used in the laboratory to influence the conformational populations of proteins. In nature, this information is used for signal transduction or energy transfer, but has also been shown to play an important role in many diseases like tauopathies or diabetes. With the goal of determining the effect of phosphorylation on amyloid fibril formation, we designed a model peptide which combines structural characteristics of α-helical coiled-coils and ß-sheets in one sequence. This peptide undergoes a conformational transition from soluble structures into insoluble amyloid fibrils over time and under physiological conditions and contains a recognition motif for PKA (cAMP-dependent protein kinase) that enables enzymatic phosphorylation. We have analyzed the pathway of amyloid formation and the influence of enzymatic phosphorylation on the different states along the conformational transition from random-coil to ß-sheet-rich oligomers to protofilaments and on to insoluble amyloid fibrils, and we found a remarkable directing effect from ß-sheet-rich structures to unfolded structures in the initial growth phase, in which small oligomers and protofilaments prevail if the peptide is phosphorylated.

SELECTION OF CITATIONS
SEARCH DETAIL
...