Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37745461

ABSTRACT

The need to accurately survey proteins and their modifications with ever higher sensitivities, particularly in clinical settings with limited samples, is spurring development of new single molecule proteomics technologies. Fluorosequencing is one such highly parallelized single molecule peptide sequencing platform, based on determining the sequence positions of select amino acid types within peptides to enable their identification and quantification from a reference database. Here, we describe substantial improvements to fluorosequencing, including identifying fluorophores compatible with the sequencing chemistry, mitigating dye-dye interactions through the use of extended polyproline linkers, and developing an end-to-end workflow for sample preparation and sequencing. We demonstrate by fluorosequencing peptides in mixtures and identifying a target neoantigen from a database of decoy MHC peptides, highlighting the potential of the technology for high sensitivity clinical applications.

2.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37502879

ABSTRACT

The practical application of new single molecule protein sequencing (SMPS) technologies requires accurate estimates of their associated sequencing error rates. Here, we describe the development and application of two distinct parameter estimation methods for analyzing SMPS reads produced by fluorosequencing. A Hidden Markov Model (HMM) based approach, extends whatprot, where we previously used HMMs for SMPS peptide-read matching. This extension offers a principled approach for estimating key parameters for fluorosequencing experiments, including missed amino acid cleavages, dye loss, and peptide detachment. Specifically, we adapted the Baum-Welch algorithm, a standard technique to estimate transition probabilities for an HMM using expectation maximization, but modified here to estimate a small number of parameter values directly rather than estimating every transition probability independently, which should help prevent overfitting. We demonstrate a high degree of accuracy on simulated data, but on experimental datasets, we observed that the model needed to be augmented with an additional error type, N-terminal blocking. This, in combination with data pre-processing, results in reasonable parameterizations of experimental datasets that agree with controlled experimental perturbations. A second independent implementation using a hybrid of DIRECT and Powell's method to reduce the root mean squared error (RMSE) between simulations and the real dataset was also developed. We compare these methods on both simulated and real data, finding that our Baum-Welch based approach outperforms DIRECT and Powell's method by most, but not all, criteria. Although some discrepancies between the results exist, we also find that both approaches provide similar error rate estimates from experimental single molecule fluorosequencing datasets.

3.
Inorg Chem ; 61(1): 246-253, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34936352

ABSTRACT

The mechanism for the CO substitution reaction involving the diosmium carbonyl sawhorse complex Os2(µ-O2CH)2(CO)6, which contains an Os-Os single bond, two axial CO ligands, and four equatorial CO ligands, was investigated experimentally and theoretically. Kinetic measurements show 13CO axial substitution proceeding by a dissociative reaction that is first-order in the complex and zero-order in 13CO but with an unexpectedly negative entropy of activation. The corresponding electronic structure calculations yield an enthalpy of activation for axial CO dissociation that is much larger than that determined by the kinetic experiments, but in agreement with the complex's stability with respect to CO loss. Additional calculations yield a dissociative interchange transition state whose free energy, enthalpy, and entropy of activation are in good agreement with those obtained from the kinetic measurements for the apparently dissociative substitution. These results point to an exchange reaction mechanism that is surprisingly close to the poorly understood transition from a dissociative mechanism with a CO-loss intermediate to a dissociative interchange mechanism with a transition state involving both the entering and the leaving COs. The key to explain these findings is provided by the vibrational analysis, which shows very low energy wagging motions for the axial COs. Thus, the incoming CO only displaces the outgoing CO when the complex has an outgoing CO near the wag's turning point. This dissociative interchange mechanism predicted by the calculation explains the unexpected combination of kinetics and stability characteristics. Kinetics reveals that the reaction is first-order in the Os dimer with a negative Eyring entropy, while a stability study shows that the Os dimer's decomposition rate is several orders of magnitude slower than CO exchange.

SELECTION OF CITATIONS
SEARCH DETAIL
...