Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177274

ABSTRACT

The influence of trifluoromethanesulfonic (TFSA) superacid on conditions of the synthesis of polybenzimidazoles, such as OPBI and CF3PBI, was studied. It was shown that the polycondensations proceeded smoother and at lower temperatures in the presence of the TFSA in Eaton's Reagent and that polymers of high molecular weights, and readily soluble in organic solvents, were obtained. The effect was more pronounced for CF3PBI, where the low reactivity monomer, 4,4' (hexafluoroisoproylidene)bis (benzoic acid), was used. CF3PBI was obtained at a moderate temperature of 140 °C with no gel fraction and exhibited an inherent viscosity twice higher than the one obtained by the traditional method. In fact, the addition of TFSA allows the obtention of soluble N-phenyl substituted CF3PBI by direct synthesis, which had not been obtained otherwise. Thus, the use of TFSA is a good media for the synthesis of N-substituted PBIs under relatively mild conditions.

2.
J Mol Model ; 28(8): 217, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35817995

ABSTRACT

The stability of 2D all nitrogen clusters containing from 6 to 96 nitrogen atoms, terminated with CF3 groups, has been explored using two computational models: dispersion corrected B3LYP functional and scaled opposite spin Møller-Plesset perturbation theory (SOS-MP2). Single point domain-based local pair natural orbital coupled-cluster theory calculations (DLPNO-CCSD(T)) was used for further energy refinement. All systems were found to be minima, and their stability increases with CF3/N ratio. Larger clusters and anion radicals were not dynamically stable, while some of the cation radicals were found to be minima on potential energy surface. The mechanism of cluster stabilization by CF3 groups is related with interaction of orbitals holding lone electron pairs and antibonding sigma orbitals.

3.
J Mol Model ; 26(8): 204, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32648129

ABSTRACT

The electronic structure of the van der Waals heterostructures (HSs) of the phosphorene (P) nanoflakes (NFs) with graphene (G) and its allotropy (H1 and H2) NFs, and their complexes with Li have been studied using dispersion-corrected TPSS functional. According to the calculations, the attractive interactions in HSs come from dispersion. It has a relatively small contribution to the binding energy in Li complexes, especially for these forming complexes with G, H1, or H2 NF side. The binding energies between the individual NFs and Li atoms increase in the order G < H1 = H2 = P. The formation of HSs results in a synergetic effect for Li binding energies. This effect is the most notable for phosphorene binding sites; however, it also holds for G, H1, and H2 NFs. The formation of complexes with Li always leads to the almost complete charge transfer from Li to the NFs or HSs. In the case of HSs, the unpaired electron of Li is always located at the carbon NF side independently on the Li binding location. The activation energies of Li hopping for individual NFs are notably higher for P comparing with G, H1, or H2 NFs. The formation of HSs rises slightly the activation energies of Li hopping due to the increase of binding energies in Li-HS complexes. Graphical abstract.

4.
J Mol Model ; 25(7): 203, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31243578

ABSTRACT

Some rotaxane molecules were designed, and their electronic capabilities were studied by means of DFT calculations. The original molecular wire consists of an iron complex that comprises aromatic substituents that constitute linear chains, and this system is complemented by the addition of fullerene C60 unities at both extremes of the chain, which act as the stoppers of the chain. Another modification was to add a link that gives way to the mechanical bond; this link is a square molecule of bis-pyrydyl-pyridinium tetraion. An interesting effect was observed as a result of these modifications; the conductivity of the systems rises with the first substitution and even more with the second in such a way that the original semiconductor material changes to give a conductor one.

5.
J Mol Model ; 21(1): 4, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25605605

ABSTRACT

Molecular diodes based on charge transfer complexes of fullerene[60] with different metalloporphyrins have been modeled. Their current-voltage characteristics and the rectification ratios (RR) were calculated using direct ab initio method at PBE/def2-SVP level of theory with D3 dispersion correction, for voltages ranging from -2 to +2 V. The highest RR of 32.5 was determined for the complex of fullerene[60] with zinc tetraphenylporphyrin at 0.8 V. Other molecular diodes possessed lower RR, however, all complexes showed RR higher than 1 at all bias voltages. The asymmetric evolutions and alignment of the molecular orbitals with the applied bias were found to be essential for generating the molecular diode rectification behavior. Metal nature of metalloporphyrins and the interaction porphyrin-electrode significantly affect RR of molecular diode. Large metal ions like Cd(2+) and Ag(2+) in metalloporphyrins disfavor rectification creating conducting channels in two directions, while smaller ions Zn(2+) and Cu(2+) favor rectification increasing the interaction between gold electrode and porphyrin macrocycle.

6.
J Mol Model ; 19(2): 793-801, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23053016

ABSTRACT

The reactions of acetone, 2,2,2-trifluoroacetone and hexafluoroacetone in methanesulfonic (MSA) and triflic acids (TFSA) with benzene have been studied at M06-2X/6-311+G(d,p) level using cluster-continuum model, where the carbonyl group is explicitly solvated by acid molecules. The introduction of a trifluoromethyl group into the ketone structure reduces the activation energy of the tetrahedral intermediates formation due to an increase of the electrophilicity of the carbonyl group and raises the activation and the reaction energies of the C-O bond cleavage in formed carbinol due to the destabilization of the corresponding carbocation. The introduction of the second trifluoromethyl group inhibits the hydroxyalkylation reaction due to a very strong increase of the reaction and activation energies of the C-O bond cleavage which becomes the rate determining step. The most important catalytic effect of TFSA compared to MSA is not the protonation of the ketone carbonyl, but the reduction of the activation and reaction energies of the carbinol C-O bond cleavage due to better protosolvation properties. Even for TFSA no complete proton transfer to carbonyl oxygen has been observed for free ketones. Therefore, the protonation energies of free ketones cannot be considered as a measure of ketone reactivity in the hydroxyalkylation reaction.

7.
J Phys Chem A ; 111(51): 13606-10, 2007 Dec 27.
Article in English | MEDLINE | ID: mdl-18052258

ABSTRACT

The stability and the reactivity of mono- and diprotonated 4-heterocyclohexanones as well as cyclohexanone in triflic acid have been studied at the PBE0/aug-cc-pvtz//PBE0/6-31+G** level of theory. In all cases the first protonation is an exergonic process occurring at a carbonyl oxygen except for 4-piperidone where a nitrogen atom is protonated fist. Second protonation is only slightly endergonic for all studied molecules except for cyclohexanone where the second protonation is very unfavorable thermodynamically. According to calculations, diprotonated 4-heterocyclohexanones are much more active in the reactions of triflic acid mediated polyalkoxyalkylation with aromatic hydrocarbons compared to monoprotonated ones. The increase of the reactivity of diprotonated 4-heterocyclohexanones is due to inductive effect rather than through space electrostatic influence as follows from the electronic structure analysis of dications. Moreover, the second protonation reduces the possibility of an aldol condensation side reaction, reducing the enol electrophilicity rendering heterocyclohexanones as promising monomers for superacid mediated polyhydroxyalkylation.

SELECTION OF CITATIONS
SEARCH DETAIL
...