Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 37(8): 1643-1653, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37043600

ABSTRACT

ABSTRACT: Horgan, BG, Tee, N, West, NP, Drinkwater, EJ, Halson, SL, Colomer, CME, Fonda, CJ, Tatham, J, Chapman, DW, and Haff, GG. Acute performance, daily well-being and hormone responses to water immersion after resistance exercise in junior international and subelite male volleyball athletes. J Strength Cond Res 37(8): 1643-1653, 2023-Athletes use postexercise hydrotherapy strategies to improve recovery and competition performance and to enhance adaptative responses to training. Using a randomized cross-over design, the acute effects of 3 postresistance exercise water immersion strategies on perceived recovery, neuromuscular performance, and hormone concentrations in junior international and subelite male volleyball athletes ( n = 18) were investigated. After resistance exercise, subjects randomly completed either 15-minute passive control (CON), contrast water therapy (CWT), cold (CWI), or hot water immersion (HWI) interventions. A treatment effect occurred after HWI; reducing perceptions of fatigue (HWI > CWT: p = 0.05, g = 0.43); improved sleep quality, compared with CON ( p < 0.001, g = 1.15), CWI ( p = 0.017, g = 0.70), and CWT ( p = 0.018, g = 0.51); as well as increasing testosterone concentration (HWI > CWT: p = 0.038, g = 0.24). There were trivial to small ( p < 0.001-0.039, g = 0.02-0.34) improvements (treatment effect) in jump performance (i.e., squat jump and countermovement jump) after all water immersion strategies, as compared with CON, with high variability in the individual responses. There were no significant differences (interaction effect, p > 0.05) observed between the water immersion intervention strategies and CON in performance ( p = 0.153-0.99), hormone ( p = 0.207-0.938), nor perceptual ( p = 0.368-0.955) measures. To optimize recovery and performance responses, e.g., during an in-season competition phase, postresistance exercise HWI may assist with providing small-to-large improvements for up to 38 hours in perceived recovery (i.e., increased sleep quality and reduced fatigue) and increases in circulating testosterone concentration. Practitioners should consider individual athlete neuromuscular performance responses when prescribing postexercise hydrotherapy. These findings apply to athletes who aim to improve their recovery status, where postresistance exercise HWI optimizes sleep quality and next-day perceptions of fatigue.


Subject(s)
Resistance Training , Volleyball , Humans , Male , Water , Immersion , Athletes , Fatigue , Testosterone , Cold Temperature
2.
J Strength Cond Res ; 36(12): 3473-3484, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-34537801

ABSTRACT

ABSTRACT: Horgan, BG, West, NP, Tee, N, Drinkwater, EJ, Halson, SL, Vider, J, Fonda, CJ, Haff, GG, and Chapman, DW. Acute inflammatory, anthropometric, and perceptual (muscle soreness) effects of postresistance exercise water immersion in junior international and subelite male volleyball athletes. J Strength Cond Res 36(12): 3473-3484, 2022-Athletes use water immersion strategies to recover from training and competition. This study investigated the acute effects of postexercise water immersion after resistance exercise. Eighteen elite and subelite male volleyball athletes participated in an intervention using a randomized cross-over design. On separate occasions after resistance exercise, subjects completed 1 of 4 15-minute interventions: control (CON), cold water immersion (CWI), contrast water therapy (CWT), or hot water immersion (HWI). Significance was accepted at p ≤ 0.05. Resistance exercise induced significant temporal changes (time effect) for inflammatory, anthropometric, perceptual, and performance measures. Serum creatine kinase was reduced ( g = 0.02-0.30) after CWI ( p = 0.007), CWT ( p = 0.006), or HWI ( p < 0.001) vs. CON, whereas it increased significantly ( g = 0.50) after CWI vs. HWI. Contrast water therapy resulted in significantly higher ( g = 0.56) interleukin-6 concentrations vs. HWI. Thigh girth increased ( g = 0.06-0.16) after CWI vs. CON ( p = 0.013) and HWI ( p < 0.001) and between CWT vs. HWI ( p = 0.050). Similarly, calf girth increased ( g = 0.01-0.12) after CWI vs. CON ( p = 0.039) and CWT ( p = 0.018), and HWI vs. CON ( p = 0.041) and CWT ( p = 0.018). Subject belief in a postexercise intervention strategy was associated with HSP72 ("believer">"nonbeliever," p = 0.026), muscle soreness ("believer">"nonbeliever," p = 0.002), and interleukin-4 ("nonbeliever">"believer," p = 0.002). There were no significant treatment × time (interaction effect) pairwise comparisons. Choice of postexercise water immersion strategy (i.e., cold, contrast, or hot) combined with a belief in the efficacy of that strategy to enhance recovery or performance improves biological and perceptual markers of muscle damage and soreness. On same or subsequent days where resistance exercise bouts are performed, practitioners should consider athlete beliefs when prescribing postexercise water immersion, to reduce muscle soreness.


Subject(s)
Myalgia , Volleyball , Male , Humans , Myalgia/prevention & control , Water , Immersion , Athletes , Cold Temperature , Muscle, Skeletal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...