Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 90(9): 093902, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31575256

ABSTRACT

We describe the next-generation system for in situ characterization of a complex oxide thin film and heterostructure growth by pulsed laser deposition (PLD) using synchrotron hard X-rays. The system consists of a PLD chamber mounted on a diffractometer allowing both real-time surface X-ray diffraction (SXRD) and in situ hard X-ray photoelectron spectroscopy (HAXPES). HAXPES is performed in the incident X-ray energy range from 4 to 12 keV using a Scienta EW4000 electron energy analyzer mounted on the PLD chamber fixed parallel with the surface normal. In addition to the standard application mode of HAXPES for disentangling surface from bulk properties, the increased penetration depth of high energy photoelectrons is used for investigation of the electronic structure changes through thin films grown deliberately as variable thickness capping layers. Such heterostructures represent model systems for investigating a variety of critical thickness and dead layer phenomena observed at complex oxide interfaces. In this new mode of operation, in situ HAXPES is used to determine the electronic structure associated with unique structural features identified by real-time SXRD during thin film growth. The system is configured for using both laboratory excitation sources off-line and on-line operation at beamline 33-ID-D at the Advanced Photon Source. We illustrate the performance of the system by preliminary scattering and spectroscopic data on oxygen vacancy ordering induced perovskite-to-brownmillerite reversible phase transformation in La2/3Sr1/3MnO3 films capped with oxygen deficient SrTiO3-δ (100) layers of varying thickness.

2.
Nat Mater ; 16(10): 1003-1009, 2017 10.
Article in English | MEDLINE | ID: mdl-28783161

ABSTRACT

Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

3.
Rev Sci Instrum ; 87(1): 013901, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26827327

ABSTRACT

In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.

4.
Nat Mater ; 13(9): 879-83, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25087067

ABSTRACT

The A(n+1)B(n)O(3n+1) Ruddlesden-Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of the intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden-Popper phases. We demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La3Ni2O7.

5.
Rev Sci Instrum ; 84(2): 025111, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23464255

ABSTRACT

In the growing field of in operando and in situ X-ray experiments, there exists a large disparity in the types of environments and equipment to control them. This situation makes it challenging to conduct multiple experiments with a single mechanical interface to the diffractometer. Here, we describe the design and implementation of a modular instrument mounting system that can be installed on a standard six-circle diffractometer (e.g., 5021 Huber GmbH). This new system allows for the rapid changeover of different chambers and sample heaters and permits accurate sample positioning (x, y, z, and azimuthal rotation) without rigid coupling to the chamber body. Isolation of the sample motion from the chamber enclosure is accomplished through a combination of custom rotary seals and bellows. Control of the pressure and temperature has been demonstrated in the ranges of 10(-6)-10(3) Torr and 25°C-900°C, respectively. We have utilized the system with several different modular instruments. As an example, we provide in situ sputtering results, where the growth dynamics of epitaxial LaGaO3 thin films on (001) SrTiO3 substrates were investigated.

6.
Phys Rev Lett ; 107(18): 187602, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22107673

ABSTRACT

We present a synchrotron x-ray study of the equilibrium polarization structure of ultrathin PbTiO(3) films on SrRuO(3) electrodes epitaxially grown on SrTiO(3) (001) substrates, as a function of temperature and the external oxygen partial pressure (pO(2)) controlling their surface charge compensation. We find that the ferroelectric Curie temperature (T(C)) varies with pO(2) and has a minimum at the intermediate pO(2), where the polarization below T(C) changes sign. The experiments are in qualitative agreement with a model based on Landau theory that takes into account the interaction of the phase transition with the electrochemical equilibria for charged surface species. The paraelectric phase is stabilized at intermediate pO(2) when the concentrations of surface species are insufficient to compensate either polar orientation.

7.
Phys Rev Lett ; 106(3): 037401, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405295

ABSTRACT

To study equilibrium changes in composition, valence, and electronic structure near the surface and into the bulk, we demonstrate the use of a new approach, total-reflection inelastic x-ray scattering, as a sub-keV spectroscopy capable of depth profiling chemical changes in thin films with nanometer resolution. By comparing data acquired under total x-ray reflection and penetrating conditions, we are able to separate the O K-edge spectra from a 10 nm La0.6Sr0.4CoO3 thin film from that of the underlying SrTiO3 substrate. With a smaller wavelength probe than comparable soft x-ray absorption measurements, we also describe the ability to easily access dipole-forbidden final states, using the dramatic evolution of the La N4,5 edge with momentum transfer as an example.


Subject(s)
Cobalt/chemistry , Lanthanum/chemistry , Oxides/chemistry , Strontium/chemistry , X-Ray Diffraction , Elasticity , Titanium/chemistry
8.
Science ; 331(6019): 886-9, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21330538

ABSTRACT

The formation of two-dimensional electron gases (2DEGs) at complex oxide interfaces is directly influenced by the oxide electronic properties. We investigated how local electron correlations control the 2DEG by inserting a single atomic layer of a rare-earth oxide (RO) [(R is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), or yttrium (Y)] into an epitaxial strontium titanate oxide (SrTiO(3)) matrix using pulsed-laser deposition with atomic layer control. We find that structures with La, Pr, and Nd ions result in conducting 2DEGs at the inserted layer, whereas the structures with Sm or Y ions are insulating. Our local spectroscopic and theoretical results indicate that the interfacial conductivity is dependent on electronic correlations that decay spatially into the SrTiO(3) matrix. Such correlation effects can lead to new functionalities in designed heterostructures.

9.
Phys Rev Lett ; 103(17): 177601, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19905783

ABSTRACT

We demonstrate the dramatic effect of film thickness on the ferroelectric phase transition temperature Tc in strained BaTiO3 films grown on SrTiO3 substrates. Using variable-temperature ultraviolet Raman spectroscopy enables measuring Tc in films as thin as 1.6 nm, and a film thickness variation from 1.6 to 10 nm leads to Tc tuning from 70 to about 925 K. Raman data are consistent with synchrotron x-ray scattering results, which indicate the presence of 180 degrees domains below Tc, and thermodynamic phase-field model calculations of Tc as a function of thickness.

10.
Phys Rev Lett ; 102(4): 047601, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19257476

ABSTRACT

According to recent experiments and predictions, the orientation of the polarization at the surface of a ferroelectric material can affect its surface chemistry. Here we demonstrate the converse effect: the chemical environment can control the polarization orientation in a ferroelectric film. In situ synchrotron x-ray scattering measurements show that high or low oxygen partial pressure induces outward or inward polarization, respectively, in an ultrathin PbTiO3 film. Ab initio calculations provide insight into surface structure changes observed during chemical switching.

11.
Phys Rev Lett ; 96(12): 127601, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16605959

ABSTRACT

Using in situ high-resolution synchrotron x-ray scattering, the Curie temperature TC has been determined for ultrathin c-axis epitaxial PbTiO3 films on conducting substrates (SrRuO3 on SrTiO3), with surfaces exposed to a controlled vapor environment. The suppression of TC was relatively small, even for the thinnest film (1.2 nm). We observe that 180 degrees stripe domains do not form, indicating that the depolarizing field is compensated by free charge at both interfaces. This is confirmed by ab initio calculations that find polar ground states in the presence of ionic adsorbates.

12.
J Synchrotron Radiat ; 12(Pt 2): 163-7, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15728968

ABSTRACT

In situ synchrotron X-ray scattering was used to observe both the growth of PbTiO3 films by metal-organic chemical vapour deposition and the behaviour of the ferroelectric phase transition as a function of film thickness. The dependences of growth mode and deposition rate on gas flows and substrate temperature were determined by homoepitaxial growth studies on thick films (>50 nm). These studies facilitated the growth of thin coherently strained PbTiO3 films on SrTiO3 (001) substrates, with thicknesses ranging from 2 to 42 nm. Experiments on the ferroelectric phase transition as a function of film thickness were carried out in these films under controlled mechanical and electrical boundary conditions.

13.
Phys Rev Lett ; 89(6): 067601, 2002 Aug 05.
Article in English | MEDLINE | ID: mdl-12190610

ABSTRACT

We report the observation of periodic 180 degrees stripe domains below the ferroelectric transition in thin films. Epitaxial PbTiO3 films of thickness d=1.6 to 42 nm on SrTiO3 substrates were studied using x-ray scattering. Upon cooling below T(C), satellites appeared around Bragg peaks indicating the presence of 180 degrees stripe domains of period Lambda=3.7 to 24 nm. The dependence of Lambda on d agrees well with theory including epitaxial strain effects, while the suppression of T(C) for thinner films is significantly larger than that expected solely from stripe domains.

SELECTION OF CITATIONS
SEARCH DETAIL
...