Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(11): 13666-13675, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33688725

ABSTRACT

Moisture penetration into active biomedical implants such as the bionic ear and eye is a major problem in healthcare since surgery is required to replace devices affected by corrosion. Existing methods for measuring moisture leak rates such as the commercially available dynamic relative humidity method are not sufficiently sensitive to guarantee security against moisture penetration. Helium leak detection is highly sensitive but is challenged by the unknown relation to the moisture leak rate because of mixed flow modes involving liquid water. A standard moisture leak traceable to fundamental units is not currently available, preventing direct comparison of moisture and helium leak rates in the same device. Here, we demonstrate a practical calibrated moisture leak based on the stable polymer poly(ether-ether-ketone), for calibrating heavy water mass spectrometry. Using biomedical test structures from manufactured encapsulations, we show that in the majority of cases, calibrated measurements of molar moisture leak rates exceed the helium leak rate, especially for very small and large leaks. Comparison with theory shows that LaPlace pressure is the driving force for the enhanced moisture flows. We recommend that the compliance limit for helium testing in biomedical devices be reduced by one order of magnitude.


Subject(s)
Biocompatible Materials/chemistry , Deuterium Oxide/analysis , Ketones/chemistry , Polyethylene Glycols/chemistry , Benzophenones/chemistry , Humidity , Mass Spectrometry/methods , Materials Testing/methods , Permeability , Polymers , Prostheses and Implants
2.
Biomater Sci ; 1(12): 1260-1272, 2013 Dec 29.
Article in English | MEDLINE | ID: mdl-32481981

ABSTRACT

Diffusion of active cytotoxic agents throughout an entire solid tumour is a particular challenge to successful drug delivery. Here we show the simple and robust generation of non-toxic, 10-15 nm superparamagnetic iron oxide nanoparticles (SPIONs) that have been sterically stabilized by either 100% anionic or 100% cationic or 100% neutral end-functionalized steric stabilizers or by novel combinations of cationic and neutral end-functionalized polymer. When these nanoparticles were co-administered with various anti-cancer drugs, a significant increase in the diffusion and effectiveness of the cytotoxin in a 3-dimensional model of a solid tumour was shown for specific combinations of surface functionality and cytotoxin. The critical determinant of enhanced cytotoxin diffusion and effectiveness was the end functionality of the steric stabilizers and not the core composition (either iron oxide, silica or gold). We provide evidence that SPIONs stabilized with heterogeneous steric stabilizers enhance nuclear uptake of doxorubicin across multiple cell layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...