Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 31(12): 2093-2106.e7, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38056457

ABSTRACT

The erythrocyte silent Duffy blood group phenotype in Africans is thought to confer resistance to Plasmodium vivax blood-stage infection. However, recent studies report P. vivax infections across Africa in Fy-negative individuals. This suggests that the globin transcription factor 1 (GATA-1) SNP underlying Fy negativity does not entirely abolish Fy expression or that P. vivax has developed a Fy-independent red blood cell (RBC) invasion pathway. We show that RBCs and erythroid progenitors from in vitro differentiated CD34 cells and from bone marrow aspirates from Fy-negative samples express a functional Fy on their surface. This suggests that the GATA-1 SNP does not entirely abolish Fy expression. Given these results, we developed an in vitro culture system for P. vivax and show P. vivax can invade erythrocytes from Duffy-negative individuals. This study provides evidence that Fy is expressed in Fy-negative individuals and explains their susceptibility to P. vivax with major implications and challenges for P. vivax malaria eradication.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Humans , Plasmodium vivax/metabolism , Antigens, Protozoan , Erythropoiesis , Erythrocytes , Duffy Blood-Group System/genetics , Duffy Blood-Group System/metabolism
2.
PLoS One ; 15(12): e0238010, 2020.
Article in English | MEDLINE | ID: mdl-33275613

ABSTRACT

Multiplexed bead-based assays that use Luminex® xMAP® technology have become popular for measuring antibodies against proteins of interest in many fields, including malaria and more recently SARS-CoV-2/COVID-19. There are currently two formats that are widely used: non-magnetic beads or magnetic beads. Data are lacking regarding the comparability of results obtained using these two types of beads, and for assays run on different instruments. Whilst non-magnetic beads can only be run on flow-based instruments (such as the Luminex® 100/200™ or Bio-Plex® 200), magnetic beads can be run on both these and the newer MAGPIX® instruments. In this study we utilized a panel of purified recombinant Plasmodium vivax proteins and samples from malaria-endemic areas to measure P. vivax-specific IgG responses using different combinations of beads and instruments. We directly compared: i) non-magnetic versus magnetic beads run on a Bio-Plex® 200, ii) magnetic beads run on the Bio-Plex® 200 versus MAGPIX® and iii) non-magnetic beads run on a Bio-Plex® 200 versus magnetic beads run on the MAGPIX®. We also performed an external comparison of our optimized assay. We observed that IgG antibody responses, measured against our panel of P. vivax proteins, were moderately-strongly correlated in all three of our comparisons (pearson r>0.5 for 18/19 proteins), however higher amounts of protein were required for coupling to magnetic beads. Our external comparison indicated that results generated in different laboratories using the same coupled beads are also highly comparable (pearson r>0.7), particularly if a reference standard curve is used.


Subject(s)
Cell Separation/methods , Immunoglobulin G/immunology , Immunomagnetic Separation/methods , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Humans , Magnetic Phenomena , Malaria/immunology , Malaria, Vivax/immunology , Male , Microspheres , Papua New Guinea/epidemiology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Technology
4.
Proteomics ; 18(2)2018 01.
Article in English | MEDLINE | ID: mdl-29266845

ABSTRACT

The development of vaccines against malaria and serodiagnostic tests for detecting recent exposure requires tools for antigen discovery and suitable animal models. The protein microarray is a high-throughput, sample sparing technique, with applications in infectious disease research, clinical diagnostics, epidemiology, and vaccine development. We recently demonstrated Qdot-based indirect immunofluorescence together with portable optical imager ArrayCAM using single isotype detection could replicate data using the conventional laser confocal scanner system. We developed a multiplexing protocol for simultaneous detection of IgG, IgA, and IgM and compared samples from a controlled human malaria infection model with those from controlled malaria infections of Aotus nancymaae, a widely used non-human primate model of human malaria. IgG profiles showed the highest concordance in number of reactive antigens; thus, of the 139 antigens recognized by human IgG antibody, 111 were also recognized by Aotus monkeys. Interestingly, IgA profiles were largely non-overlapping. Finally, on the path toward wider deployment of the portable platform, we show excellent correlations between array data obtained in five independent laboratories around the United States using the multiplexing protocol (R2 : 0.60-0.92). This study supports the use of this platform for wider deployment, particularly in endemic areas where such a tool will have the greatest impact on global human health.


Subject(s)
Immunoassay/methods , Immunoglobulin G/analysis , Malaria, Falciparum/diagnosis , Protein Array Analysis/methods , Proteome/analysis , Animals , Aotidae , Fluorescent Antibody Technique, Indirect , Humans , Immunoglobulin A/analysis , Immunoglobulin M/analysis , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Quantum Dots
SELECTION OF CITATIONS
SEARCH DETAIL
...