Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11553, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773312

ABSTRACT

Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-ß signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1ß, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-ß signaling pathways, and exhibiting anti-inflammatory properties.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrogenesis , Glycolysis , Inflammation , Sericins , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Smad2 Protein/metabolism , Animals , Signal Transduction/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Chondrogenesis/drug effects , Sericins/pharmacology , Glycolysis/drug effects , Mice , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Chondrocytes/metabolism , Chondrocytes/drug effects , Cell Line , Bombyx/metabolism
2.
Food Waterborne Parasitol ; 35: e00229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774558

ABSTRACT

Human gnathostomiasis is a food-borne zoonotic helminthic infection widely reported in Latin America, Asia, and Southeast Asia. Consuming raw, or under-cooked fresh-water fish is the leading cause of this helminthic infection, which is clinically characterized by signs of inflammation, itching sensation, or irritation with migratory swelling. Neurological symptoms resulting from neurognathostomiasis vary, and there is scant information due to the rareness of patient brain samples. This study aimed to demonstrate the first evidence of human neurognathostomiasis by the detection of Gnathostoma spinigerum larva in patient's brain during craniotomy, supported by histopathological, immunological and proteomic evidence. Clinical symptoms were obtained from medical history and physical examination with laboratory investigations, including magnetic resonance imaging (MRI), left temporal craniotomy, histopathology of brain tissue, and Western blot analysis, were performed to elucidate the causative pathogens for diagnosis. In addition, the host-parasite interaction of the parasite invading the patient's brain was characterized through proteomics. Histopathology revealed worms with the characteristic cuticular spines of G. spinigerum which were detected and identified. These histopathological findings were consistent with a positive Western blot showing a 24-kDa reactive-band for gnathostomiasis. Proteomic analysis revealed the presence of G. spinigerum serpin and serine protease in the patient's serum. Moreover, the leucine-rich alpha-2-glycoprotein was indicated as a systemic biomarker of early brain injury related to invasion by G. spinigerum. Therefore, our study provides the initial evidence of human neurognathostomiasis due to G. spinigerum larval invasion along with successful craniotomy and proven larval detection including complete follow-up, and the disease prognosis after surgical treatment.

3.
Heliyon ; 9(11): e21563, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027599

ABSTRACT

Urea cycle is an important metabolic process that initiates in liver mitochondria and converts ammonia to urea. The impairment of ammonia detoxification, both primary and secondary causes, lead to hyperammonemia, a life-threatening condition affecting to the brain. Current treatments are not enough effective. In addition, our recent proteomics study in hypercholesterolemic rat model demonstrated that sericin enhances hepatic nitrogenous waste removal through carbamoyl-phosphate synthase 1 (CPS-1), aldehyde dehydrogenase-2 (ALDH-2), and uricase proteins. However, the underlining mechanisms regard to this property is not clarified yet. Therefore, the present study aims to examine the effect of sericin on urea cycle enzyme genes (CPS-1 and ornithine transcarbamylase; OTC) and proteins (mitogen-activated protein kinase; MAPK, caspase recruitment domain-containing protein 9; CARD-9, Microtubule-associated protein light chain 3; LC-3), which relate to urea production and liver homeostasis in hepatic cell line (HepG2) and hypercholesterolemic rat treated with or without sericin. qRT-PCR, immunohistochemistry, and electron microscopy techniques were performed. In vitro study determined that high dose of sericin at 1 mg/ml increased liver detoxification enzyme (Cytochrome P450 1A2; CYP1A2 and ALDH-2) and urea cycle enzyme (CPS-1 and OTC) genes. Both in HepG2 cell and rat liver mitochondria, sericin significantly downregulated CARD-9 (apoptotic protein) expression while upregulated MAPK (hepatic homeostasis protein) and LC-3 (autophagic protein) expressions. Hence, it might be concluded that sericin promotes ammonia detoxification by both increases urea cycle enzyme genes and enhances hepatic autophagy in associated with CARD-9/MAPK pathway (as shown by their own negative relationship). This study presents another beneficial property of sericin to develop an upcoming candidate for ammonia toxicity alleviation and liver function improvement.

4.
Sci Rep ; 13(1): 12133, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495626

ABSTRACT

Therapeutic treatment forms can play significant roles in resolving psoriatic plaques or promoting wound repair in psoriatic skin. Considering the biocompatibility, mechanical strength, flexibility, and adhesive properties of silk fibroin sheets/films, it is useful to combine them with anti-psoriatic agents and healing stimulants, notably silk sericin. Here, we evaluate the curative properties of sericin-coated thin polymeric films (ScF) fabricated from silk fibroin, using an imiquimod-induced psoriasis rat model. The film biocompatibility and psoriatic wound improvement capacity was assessed. A proteomics study was performed to understand the disease resolving mechanisms. Skin-implantation study exhibited the non-irritation property of ScF films, which alleviate eczema histopathology. Immunohistochemical and gene expression revealed the depletion of ß-defensin, caspase-3 and -9, TNF-α, CCL-20, IL-1ß, IL-17, TGF-ß, and Wnt expressions and S100a14 mRNA level. The proteomics study suggested that ScF diminish keratinocyte proliferation via the mTOR pathway by downregulating mTOR protein, corresponding to the modulation of TNF-α, Wnt, and IL-1ß levels, leading to the enhancement of anti-inflammatory environment by IL-17 downregulation. Hematology data demonstrated the safety of using these biomaterials, which provide a potential therapeutic-option for psoriasis treatment due to desirable effects, especially anti-proliferation and anti-inflammation, functioning via the mTOR pathway and control of IL-17 signaling.


Subject(s)
Fibroins , Psoriasis , Sericins , Rats , Animals , Sericins/pharmacology , Sericins/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fibroins/pharmacology , Fibroins/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Skin/metabolism , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology , TOR Serine-Threonine Kinases/metabolism , Polymers/pharmacology , Keratinocytes/metabolism
5.
Toxics ; 11(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36851021

ABSTRACT

Primaquine (PQ) is the only antimalarial medication used to eradicate many species of Plasmodium gametocytes and prevent relapse in vivax and ovale malarias. PQ metabolites induce oxidative stress and impair parasitic mitochondria, leading to protozoal growth retardation and death. Collateral damage is also presented in mammalian host cells, particularly erythrocytes, resulting in hemolysis and tissue destruction. However, the underlying mechanisms of these complications, particularly the mitochondria-mediated cell death of the host, are poorly understood. In the present study, toxicopathological studies were conducted on a rat model to determine the effect of PQ on affected tissues and mitochondrial toxicity. The results indicated that the LD50 for PQ is 200 mg/kg. A high dose of PQ induced hemolytic anemia, elevated a hepatic enzyme (SGPT), and induced proximal tubular degeneration, ventricular cardiomyopathy, and mitochondrial dysregulation. In addition, PQ induced the upregulation of apoptosis-related proteins Drp-1 and caspase-3, with a positive correlation, as well as the pro-apoptotic mitochondrial gene expression of Bax, reflecting the toxic effect of high doses of PQ on cellular damage and mitochondrial apoptosis in terms of hepatotoxicity, nephrotoxicity, and cardiotoxicity. Regarding the risk/benefit ratio of drug administration, our research provides caution for the use of PQ in the treatment of malaria based on its toxicopathological effects.

6.
Nutrients ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364802

ABSTRACT

Pre-diabetic or early-stage type 2 diabetes patients may develop an adverse diabetic progression, leading to several complications and increasing hospitalization rates. Mulberry leaves, which contain 1-deoxynojirimycin (DNJ), have been used as a complementary medicine for diabetes prevention and treatment. Our recent study demonstrated that mulberry leaf powder with 12 mg of DNJ improves postprandial hyperglycemia, fasting plasma glucose, and glycated hemoglobin. However, the detailed mechanisms are still unknown. This study investigates the effect of long-term (12-week) supplementation of mulberry leaves in obese people with prediabetes and patients with early-stage type 2 diabetes. Participants' blood was collected before and after supplementation. The protein profile of the plasma was examined by proteomics. In addition, the mitochondrial function was evaluated by energetic and homeostatic markers using immunoelectron microscopy. The proteomics results showed that, from a total of 1291 proteins, 32 proteins were related to diabetes pathogenesis. Retinol-binding protein 4 and haptoglobin protein were downregulated, which are associated with insulin resistance and inflammation, respectively. For mitochondrial function, the haloacid dehalogenase-like hydrolase domain-containing protein 3 (HDHD-3) and dynamin-related protein 1 (Drp-1) displayed a significant increment in the after treatment group. In summary, administration of mulberry leaf powder extract in prediabetes and the early stage of diabetes can alleviate insulin resistance and inflammation and promote mitochondrial function in terms of energy production and fission.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Morus , Prediabetic State , Humans , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , 1-Deoxynojirimycin/metabolism , Diabetes Mellitus, Type 2/metabolism , Haptoglobins/metabolism , Inflammation/metabolism , Plant Extracts/metabolism , Plant Leaves/metabolism , Powders , Prediabetic State/metabolism
7.
Microb Ecol ; 83(1): 216-235, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33890146

ABSTRACT

Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.


Subject(s)
Aspergillus fumigatus , Cytoskeleton/microbiology , Epithelium/microbiology , Mycoses , Scedosporium , A549 Cells , Animals , Humans , Lung , Mice
8.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613589

ABSTRACT

The noncontagious immune-mediated skin disease known as psoriasis is regarded as a chronic skin condition with a 0.09-11.4% global prevalence. The main obstacle to the eradication of the disease continues to be insufficient treatment options. Sericin, a natural biopolymer from Bombyx mori cocoons, can improve skin conditions via its immunomodulatory effect. Many external therapeutic methods are currently used to treat psoriasis, but sericin-based hydrogel is not yet used to treat plaques of eczema. Through the use of an imiquimod rat model, this study sought to identify the physical and chemical characteristics of a silk sericin-based poly(vinyl) alcohol (SS/PVA) hydrogel and assess both its therapeutic and toxic effects on psoriasis. The cytokines, chemokines, and genes involved in the pathogenesis of psoriasis were investigated, focusing on the immuno-pathological relationships. We discovered that the SS/PVA had a stable fabrication and proper release. Additionally, the anti-inflammatory, antioxidant, and anti-apoptotic properties of SS/PVA reduced the severity of psoriasis in both gross and microscopic skin lesions. This was demonstrated by a decrease in the epidermal histopathology score, upregulation of nuclear factor erythroid 2-related factor 2 and interleukin (IL)-10, and a decrease in the expression of tumor necrosis factor (TNF)-α and IL-20. Moreover, the genes S100a7a and S100a14 were downregulated. Additionally, in rats given the SS/PVA treatment, blood urea nitrogen, creatinine, and serum glutamic oxaloacetic transaminase levels were within normal limits. Our findings indicate that SS/PVA is safe and may be potentiated to treat psoriasis in a variety of forms and locations of plaque because of its physical, chemical, and biological characteristics.


Subject(s)
Psoriasis , Sericins , Rats , Animals , Sericins/pharmacology , Sericins/therapeutic use , Sericins/chemistry , Polyvinyl Alcohol/chemistry , Psoriasis/drug therapy , Hydrogels , Bandages
9.
Front Med (Lausanne) ; 8: 692008, 2021.
Article in English | MEDLINE | ID: mdl-34336895

ABSTRACT

Particulate matter 2.5 (PM2.5) in the air enters the human body by diffusion into the blood. Therefore, hematological abnormalities might occur because of these toxic particles, but few studies on this issue have been reported. According to Cochrane guidance, we performed a systematic review on the relationship between exposure to PM2.5 and the risk of hematological disorders. Ten articles were included in this review. Anemia was found among children and elderly populations with 2- to 5-year PM2.5 exposure. Young children from mothers exposed to air pollution during pregnancy had a higher incidence of leukemia similar to the elderly. Supporting these data, outdoor workers also showed abnormal epigenetic modifications after exposure to very high PM2.5 levels. Adults living in high PM2.5 areas for 2 years were more likely to develop thrombocytosis. Finally, elderly populations with 7- to 8-year PM2.5 exposure showed increased risks of venous thromboembolism. In conclusion, the associations between PM2.5 and hematological aberrations among high-risk people with long-term exposure were reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...