Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067840

ABSTRACT

This article presents an analytical solution for calculating the flow rate in water injection wells based on the established thermal profile along the tubing. The intent is to minimize the intrinsic systematic error of classic quasi-static methodologies, which assume that all thermal transience on well completion has passed. When these techniques are applied during the initial hours of injection well operation, it can result in errors higher than 20%. To solve this limitation, the first law of thermodynamics was used to define a mathematical model and a thermal profile was established in the injection fluid, captured by using distributed temperature systems (DTSs) installed inside the tubing. The geothermal profile was also established naturally by a thermal source in the earth to determine the thermal gradient. A computational simulation of the injection well was developed to validate the mathematical solution. The simulation intended to generate the fluid's thermal profile, for which data were not available for the desired time period. As a result, at the cost of greater complexity, the systematic error dropped to values below 1% in the first two hours of well operation, as seen throughout this document. The code was developed in Phyton, version 1.7.0., from Anaconda Navigator.

2.
Sensors (Basel) ; 19(20)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623218

ABSTRACT

This paper presents the development and implementation of a centralized industrial network for an automatic purified water production system used in the pharmaceutical industry. This implementation is part of a project to adapt an industrial plant to cope with advances in industrial technology to achieve the level of Industry 4.0. The adequacy of the instruments and the interconnection of the controllers made it possible to monitor the process steps by transforming a manual plant, with discontinuous production into an automated plant, improving the efficiency and quality of the produced water. The development of a supervisory system provides the operator with a panoramic view of the process, informing in real-time the behavior of the variables in the process steps, as well as storing data, event history and alarms. This system also prevented the collection of erroneous or manipulated data, making the process more transparent and reliable. Accordingly, we have been able to tailor this water treatment plant to operate within the minimum requirements required by the regulator.


Subject(s)
Automation , Drug Industry/trends , Water Purification , Humans , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...