Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 543: 37-48, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38401710

ABSTRACT

Abnormal cognitive and sensorial properties have been reported in patients with psychiatric and neurodevelopmental conditions, such as attention deficit hyperactivity disorder (ADHD). ADHD patients exhibit impaired dopaminergic signaling and plasticity in brain areas related to cognitive and sensory processing. The spontaneous hypertensive rat (SHR), in comparison to the Wistar Kyoto rat (WKY), is the most used genetic animal model to study ADHD. Brain neurotrophic factor (BDNF), critical for midbrain and hippocampal dopaminergic neuron survival and differentiation, is reduced in both ADHD subjects and SHR. Physical exercise (e.g. swimming) promotes neuroplasticity and improves cognition by increasing BDNF and irisin. Here we investigate the effects of gestational swimming on sensorial and behavioral phenotypes, striatal dopaminergic parameters, and hippocampal FNDC5/irisin and BDNF levels observed in WKY and SHR. Gestational swimming improved nociception in SHR rats (p = 0.006) and increased hippocampal BDNF levels (p = 0.02) in a sex-dependent manner in adolescent offspring. Sex differences were observed in hippocampal FNDC5/irisin levels (p = 0.002), with females presenting lower levels than males. Our results contribute to the notion that swimming during pregnancy is a promising alternative to improve ADHD phenotypes in the offspring.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Rats , Female , Male , Animals , Adolescent , Brain-Derived Neurotrophic Factor/metabolism , Fibronectins , Nociception , Brain/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Disease Models, Animal
2.
PLoS Negl Trop Dis ; 14(1): e0008012, 2020 01.
Article in English | MEDLINE | ID: mdl-31986144

ABSTRACT

Follicular atresia is the mechanism by which the oocyte contents are degraded during oogenesis in response to stress conditions, allowing the energetic resources stored in the developing oocytes to be reallocated to optimize female fitness. Autophagy is a conserved intracellular degradation pathway where double-membrane vesicles are formed around target organelles leading to their degradation after lysosome fusion. The autophagy-related protein 8 (ATG8) is conjugated to the autophagic membrane and has a key role in the elongation and closure of the autophagosome. Here we identified one single isoform of ATG8 in the genome of the insect vector of Chagas Disease Rhodnius prolixus (RpATG8) and found that it is highly expressed in the ovary during vitellogenesis. Accordingly, autophagosomes were detected in the vitellogenic oocytes, as seen by immunoblotting and electron microscopy. To test if autophagosomes were important for follicular atresia, we silenced RpATG8 and elicited atresia in vitellogenic females by Zymosan-A injections. We found that silenced females were still able to trigger the same levels of follicle atresia, and that their atretic oocytes presented a characteristic morphology, with accumulated brown aggregates. Regardless of the difference in morphology, RpATG8-silenced atretic oocytes presented the same levels of protein, TAG and PolyP, as detected in control atretic oocytes, as well as the same levels of acidification of the yolk organelles. Because follicular atresia has the ultimate goal of restoring female fitness, we tested if RpATG8-silenced atresia would result in female physiology and behavior changes. Under insectarium conditions, we found that atresia-induced control and RpATG8-silenced females present no changes in blood meal digestion, survival, oviposition, TAG content in the fat body, haemolymph amino acid levels and overall locomotor activity. Altogether, we found that autophagosomes are formed during oogenesis and that the silencing of RpATG8 impairs autophagosome biogenesis in the oocytes. Nevertheless, regarding major macromolecule degradation and adaptations to the fitness costs imposed by triggering an immune response, we found that autophagic organelles are not essential for follicle atresia in R. prolixus.


Subject(s)
Autophagosomes , Follicular Atresia/physiology , Gene Silencing , Insect Proteins/metabolism , Rhodnius/physiology , Animals , Female , Follicular Atresia/genetics , Insect Proteins/genetics , Oocytes , Ovulation/physiology , Rhodnius/genetics , Vitellogenesis
3.
PLoS One ; 12(9): e0185770, 2017.
Article in English | MEDLINE | ID: mdl-28961275

ABSTRACT

Most vectors of arthropod-borne diseases produce large eggs with hard and opaque eggshells. In several species, it is still not possible to induce molecular perturbations to the embryo by delivery of molecules using microinjections or eggshell permeabilization without losing embryo viability, which impairs basic studies regarding development and population control. Here we tested the properties and permeability of the eggshell of R. prolixus, a Chagas disease vector, with the aim to deliver pharmacological inhibitors to the egg cytoplasm and allow controlled molecular changes to the embryo. Using field emission scanning and transmission electron microscopy we found that R. prolixus egg is coated by three main layers: exochorion, vitelline layer and the plasma membrane, and that the pores that allow gas exchange (aeropiles) have an average diameter of 10 µm and are found in the rim of the operculum at the anterior pole of the egg. We tested if different solvents could permeate through the aeropiles and reach the egg cytoplasm/embryo and found that immersions of the eggs in ethanol lead to its prompt penetration through the aeropiles. A single five minute-immersion of the eggs/embryos in pharmacological inhibitors, such as azide, cyanide and cycloheximide, solubilized in ethanol resulted in impairment of embryogenesis in a dose dependent manner and DAPI-ethanol solutions were also able to label the embryo cells, showing that ethanol penetration was able to deliver those molecules to the embryo cells. Multiple immersions of the embryo in the same solutions increased the effect and tests using bafilomycin A1 and Pepstatin A, known inhibitors of the yolk proteolysis, were also able to impair embryogenesis and the yolk protein degradation. Additionally, we found that ethanol pre-treatments of the egg make the aeropiles more permeable to aqueous solutions, so drugs diluted in water can be carried after the eggs are pre-treated with ethanol. Thus, we found that delivery of pharmacological inhibitors to the embryo of R. prolixus can be performed simply by submersing the fertilized eggs in ethanol with no need for additional methods such as microinjections or electroporation. We discuss the potential importance of this methodology to the study of this vector developmental biology and population control.


Subject(s)
Egg Shell , Embryo, Nonmammalian/drug effects , Ethanol/pharmacology , Rhodnius/embryology , Animals , Arthropod Vectors , Electrophoresis, Polyacrylamide Gel , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Permeability , Rhodnius/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...