Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Phys Med Biol ; 69(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38593826

ABSTRACT

Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively.Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom.Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU).Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Phantoms, Imaging , Cone-Beam Computed Tomography/instrumentation , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Humans , Artifacts , Quality Control
2.
Phys Imaging Radiat Oncol ; 29: 100566, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38487622

ABSTRACT

Background and purpose: Dose calculation on cone-beam computed tomography (CBCT) images has been less accurate than on computed tomography (CT) images due to lower image quality and discrepancies in CT numbers for CBCT. As increasing interest arises in offline and online re-planning, dose calculation accuracy was evaluated for a novel CBCT imager integrated into a ring gantry treatment machine. Materials and methods: The new CBCT system allowed fast image acquisition (5.9 s) by using new hardware, including a large-size flat panel detector, and incorporated image-processing algorithms with iterative reconstruction techniques, leading to accurate CT numbers allowing dose calculation. In this study, CBCT- and CT-based dose calculations were compared based on three anthropomorphic phantoms, after CBCT-to-mass-density calibration was performed. Six plans were created on the CT scans covering various target locations and complexities, followed by CBCT to CT registrations, copying of contours, and re-calculation of the plans on the CBCT scans. Dose-volume histogram metrics for target volumes and organs-at-risk (OARs) were evaluated, and global gamma analyses were performed. Results: Target coverage differences were consistently below 1.2 %, demonstrating the agreement between CT and re-calculated CBCT dose distributions. Differences in Dmean for OARs were below 0.5 Gy for all plans, except for three OARs, which were below 0.8 Gy (<1.1 %). All plans had a 3 %/1mm gamma pass rate > 97 %. Conclusions: This study demonstrated comparable results between dose calculations performed on CBCT and CT acquisitions. The new CBCT system with enhanced image quality and CT number accuracy opens possibilities for off-line and on-line re-planning.

3.
Br J Radiol ; 96(1149): 20230110, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37493227

ABSTRACT

OBJECTIVE: Several studies have shown that dual-energy CT (DECT) can lead to improved accuracy for proton range estimation. This study investigated the clinical benefit of reduced range uncertainty, enabled by DECT, in robust optimisation for neuro-oncological patients. METHODS: DECT scans for 27 neuro-oncological patients were included. Commercial software was applied to create stopping-power ratio (SPR) maps based on the DECT scan. Two plans were robustly optimised on the SPR map, keeping the beam and plan settings identical to the clinical plan. One plan was robustly optimised and evaluated with a range uncertainty of 3% (as used clinically; denoted 3%-plan); the second plan applied a range uncertainty of 2% (2%-plan). Both plans were clinical acceptable and optimal. The dose-volume histogram parameters were compared between the two plans. Two experienced neuro-radiation oncologists determined the relevant dose difference for each organ-at-risk (OAR). Moreover, the OAR toxicity levels were assessed. RESULTS: For 24 patients, a dose reduction >0.5/1 Gy (relevant dose difference depending on the OAR) was seen in one or more OARs for the 2%-plan; e.g. for brainstem D0.03cc in 10 patients, and hippocampus D40% in 6 patients. Furthermore, 12 patients had a reduction in toxicity level for one or two OARs, showing a clear benefit for the patient. CONCLUSION: Robust optimisation with reduced range uncertainty allows for reduction of OAR toxicity, providing a rationale for clinical implementation. Based on these results, we have clinically introduced DECT-based proton treatment planning for neuro-oncological patients, accompanied with a reduced range uncertainty of 2%. ADVANCES IN KNOWLEDGE: This study shows the clinical benefit of range uncertainty reduction from 3% to 2% in robustly optimised proton plans. A dose reduction to one or more OARs was seen for 89% of the patients, and 44% of the patients had an expected toxicity level decrease.


Subject(s)
Proton Therapy , Protons , Humans , Proton Therapy/methods , Uncertainty , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods
4.
Brachytherapy ; 22(2): 269-278, 2023.
Article in English | MEDLINE | ID: mdl-36631373

ABSTRACT

PURPOSE: Even though High Dose Rate (HDR) brachytherapy has good treatment outcomes in different treatment sites, treatment verification is far from widely implemented because of a lack of easily available solutions. Previously it has been shown that an imaging panel (IP) near the patient can be used to determine treatment parameters such as the dwell time and source positions in a single material pelvic phantom. In this study we will use a heterogeneous head phantom to test this IP approach, and simulate common treatment errors to assess the sensitivity and specificity of the error-detecting capabilities of the IP. METHODS AND MATERIALS: A heterogeneous head-phantom consisting of soft tissue and bone equivalent materials was 3D-printed to simulate a base of tongue treatment. An High Dose Rate treatment plan with 3 different catheters was used to simulate a treatment delivery, using dwell times ranging from 0.3 s to 4 s and inter-dwell distances of 2 mm. The IP was used to measure dwell times, positions and detect simulated errors. Measured dwell times and positions were used to calculate the delivered dose. RESULTS: Dwell times could be determined within 0.1 s. Source positions were measured with submillimeter accuracy in the plane of the IP, and average distance accuracy of 1.7 mm in three dimensions. All simulated treatment errors (catheter swap, catheter shift, afterloader errors) were detected. Dose calculations show slightly different distributions with the measured dwell positions and dwell times (gamma pass rate for 1 mm/1% of 96.5%). CONCLUSIONS: Using an IP, it was possible to verify the treatment in a realistic heterogeneous phantom and detect certain treatment errors.


Subject(s)
Brachytherapy , Humans , Radiotherapy Dosage , Brachytherapy/methods , Equipment Design , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Printing, Three-Dimensional
5.
Med Phys ; 48(7): 3583-3594, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33978240

ABSTRACT

PURPOSE: Modern computed tomography (CT) scanners have an extended field-of-view (eFoV) for reconstructing images up to the bore size, which is relevant for patients with higher BMI or non-isocentric positioning due to fixation devices. However, the accuracy of the image reconstruction in eFoV is not well known since truncated data are used. This study introduces a new deep learning-based algorithm for extended field-of-view reconstruction and evaluates the accuracy of the eFoV reconstruction focusing on aspects relevant for radiotherapy. METHODS: A life-size three-dimensional (3D) printed thorax phantom, based on a patient CT for which eFoV was necessary, was manufactured and used as reference. The phantom has holes allowing the placement of tissue mimicking inserts used to evaluate the Hounsfield unit (HU) accuracy. CT images of the phantom were acquired using different configurations aiming to evaluate geometric and HU accuracy in the eFoV. Image reconstruction was performed using a state-of-the-art reconstruction algorithm (HDFoV), commercially available, and the novel deep learning-based approach (HDeepFoV). Five patient cases were selected to evaluate the performance of both algorithms on patient data. There is no ground truth for patients so the reconstructions were qualitatively evaluated by five physicians and five medical physicists. RESULTS: The phantom geometry reconstructed with HDFoV showed boundary deviations from 1.0 to 2.5 cm depending on the volume of the phantom outside the regular scan field of view. HDeepFoV showed a superior performance regardless of the volume of the phantom within eFOV with a maximum boundary deviation below 1.0 cm. The maximum HU (absolute) difference for soft issue inserts is below 79 and 41 HU for HDFoV and HDeepFoV, respectively. HDeepFoV has a maximum deviation of -18 HU for an inhaled lung insert while HDFoV reached a 229 HU difference. The qualitative evaluation of patient cases shows that the novel deep learning approach produces images that look more realistic and have fewer artifacts. CONCLUSION: To be able to reconstruct images outside the sFoV of the CT scanner there is no alternative than to use some kind of extrapolated data. In our study, we proposed and investigated a new deep learning-based algorithm and compared it to a commercial solution for eFoV reconstruction. The deep learning-based algorithm showed superior performance in quantitative evaluations based on phantom data and in qualitative assessments of patient data.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Artifacts , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography Scanners, X-Ray Computed
6.
Phys Med Biol ; 65(14): 145002, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32294626

ABSTRACT

The primary cone-beam computed tomography (CBCT) imaging beam scatters inside the patient and produces a contaminating photon fluence that is registered by the detector. Scattered photons cause artifacts in the image reconstruction, and are partially responsible for the inferior image quality compared to diagnostic fan-beam CT. In this work, a deep convolutional autoencoder (DCAE) and projection-based scatter removal algorithm were constructed for the ImagingRingTM system on rails (IRr), which allows for non-isocentric acquisitions around virtual rotation centers with its independently rotatable source and detector arms. A Monte Carlo model was developed to simulate (i) a non-isocentric training dataset of ≈1200 projection pairs (primary + scatter) from 27 digital head-and-neck cancer patients around five different virtual rotation centers (DCAENONISO), and (ii) an isocentric dataset existing of ≈1200 projection pairs around the physical rotation center (DCAEISO). The scatter removal performance of both DCAE networks was investigated in two digital anthropomorphic phantom simulations and due to superior performance only the DCAENONISO was applied on eight real patient acquisitions. Measures for the quantitative error, the signal-to-noise ratio, and the similarity were evaluated for two simulated digital head-and-neck patients, and the contrast-to-noise ratio (CNR) was investigated between muscle and adipose tissue in the real patient image reconstructions. Image quality metrics were compared between the uncorrected data, the currently implemented heuristic scatter correction data, and the DCAE corrected image reconstruction. The DCAENONISO corrected image reconstructions of two digital patient simulations showed superior image quality metrics compared to the uncorrected and corrected image reconstructions using a heuristic scatter removal. The proposed DCAENONISO scatter correction in this study was successfully demonstrated in real non-isocentric patient CBCT acquisitions and achieved statistically significant higher CNRs compared to the uncorrected or the heuristic corrected image data. This paper presents for the first time a projection-based scatter removal algorithm for isocentric and non-isocentric CBCT imaging using a deep convolutional autoencoder trained on Monte Carlo composed datasets. The algorithm was successfully applied to real patient data.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted/methods , Monte Carlo Method , Neural Networks, Computer , Scattering, Radiation , Artifacts , Head and Neck Neoplasms/diagnostic imaging , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
7.
Radiat Oncol ; 15(1): 60, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32151255

ABSTRACT

PURPOSE: To compare treatment plans for interstitial high dose rate (HDR) liver brachytherapy with 192Ir calculated according to current-standard TG-43U1 protocol with model-based dose calculation following TG-186 protocol. METHODS: We retrospectively evaluated dose volume histogram (DVH) parameters for liver, organs at risk (OARs) and clinical target volumes (CTVs) of 20 patient cases diagnosed with hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC). Dose calculations on a homogeneous water geometry (TG-43U1 surrogate) and on a computed tomography (CT) based geometry (TG-186) were performed using Monte Carlo (MC) simulations. The CTs were segmented based on a combination of assigning TG-186 recommended tissues to fixed Hounsfield Unit (HU) ranges and using organ contours delineated by physicians. For the liver, V5Gy and V10Gy were analysed, and for OARs the dose to 1 cubic centimeter (D1cc). Target coverage was assessed by calculating V150, V100, V95 and V90 as well as D95 and D90. For every DVH parameter, median, minimum and maximum values of the deviations of TG-186 from TG-43U1 were analysed. RESULTS: TG-186-calculated dose was found to be on average lower than dose calculated with TG-43U1. The deviation of highest magnitude for liver parameters was -6.2% of the total liver volume. For OARs, the deviations were all smaller than or equal to -0.5 Gy. Target coverage deviations were as high as -1.5% of the total CTV volume and -3.5% of the prescribed dose. CONCLUSIONS: In this study we found that TG-43U1 overestimates dose to liver tissue compared to TG-186. This finding may be of clinical importance for cases where dose to the whole liver is the limiting factor.


Subject(s)
Algorithms , Brachytherapy , Carcinoma, Hepatocellular/radiotherapy , Colorectal Neoplasms/radiotherapy , Liver Neoplasms/radiotherapy , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Female , Humans , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Male , Models, Statistical , Monte Carlo Method , Prognosis , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Tomography, X-Ray Computed/methods
8.
Phys Med Biol ; 65(2): 025002, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31835265

ABSTRACT

X-ray tubes for medical applications typically generate x-rays by accelerating electrons, emitted from a cathode, with an interelectrode electric field, towards an anode target. X-rays are not emitted from one point, but from an irregularly shaped area on the anode, the focal spot. Focal spot intensity distributions and off-focal radiation negatively affect the imaging spatial resolution and broadens the beam penumbra. In this study, a Monte Carlo simulation model of an x-ray tube was developed to evaluate the spectral and spatial characteristics of off-focal radiation for multiple photon energies. Slit camera measurements were used to determine the horizontal and vertical intensity profiles of the small and the large focal spot of a diagnostic x-ray tube. First, electron beamlet weighting factors were obtained via an iterative optimization method to represent both focal spot sizes. These weighting factors were then used to extract off-focal spot radiation characteristics for the small and large focal spot sizes at 80, 100, and 120 kV. Finally, 120 kV simulations of a steel sphere (d = 4 mm) were performed to investigate image blurring with a point source, the small focal spot, and the large focal spot. The magnitude of off-focal radiation strongly depends on the anode size and the electric field coverage, and only minimally on the tube potential and the primary focal spot size. In conclusion, an x-ray tube Monte Carlo simulation model was developed to simulate focal spot intensity distributions and to evaluate off-focal radiation characteristics at several energies. This model can be further employed to investigate focal spot correction methods and to improve cone-beam CT image quality.


Subject(s)
Monte Carlo Method , Photons , Radiography/instrumentation , Electrons , Optical Phenomena
9.
Med Phys ; 44(11): 5961-5976, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28722180

ABSTRACT

PURPOSE: A joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) 192 Ir shielded applicator has been designed and benchmarked. METHODS: A generic HDR 192 Ir shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 192 Ir source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra® Brachy with Advanced Collapsed-cone Engine, ACE™, and BrachyVision ACUROS™) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported "source centered in water" and "source displaced" test cases, and the new "source centered in applicator" test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. RESULTS: The local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the "source centered in water" and "source displaced" test cases and for the clinically relevant part of the unshielded volume in the "source centered in applicator" case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. CONCLUSIONS: The combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR 192 Ir brachytherapy.


Subject(s)
Algorithms , Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Monte Carlo Method , Radiation Dosage , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
10.
Phys Med Biol ; 61(24): 8890-8907, 2016 12 21.
Article in English | MEDLINE | ID: mdl-27910825

ABSTRACT

Model-based dose calculation algorithms (MBDCAs) are the current tools to estimate dose in brachytherapy, which takes into account heterogeneous medium, therefore, departing from water-based formalism (TG-43). One aspect associated to MBCDA is the choice of dose specification medium since it offers two possibilities to report dose: (a) dose to medium in medium, D m,m; and (b) dose to water in medium, D w,m. The discussion about the preferable quantity to be reported is underway. The dose conversion factors, DCF, between dose to water in medium, D w,m, and dose to medium in medium, D m,m, is based on cavity theory and can be obtained using different approaches. When experimental dose verification is desired using, for example, thermoluminescent LiF dosimeters, as in in vivo dose measurements, a third quantity is obtained, which is the dose to LiF in medium, D LiF,m. In this case, DCF to convert from D LiF,m to D w,m or D m,m is necessary. The objective of this study is to estimate DCFs using different approaches, present in the literature, quantifying the differences between them. Also, dose in water and LiF cavities in different tissue media and respective conversion factors to be able to convert LiF-based dose measured values into dose in water or tissue were obtained. Simple cylindrical phantoms composed by different tissue equivalent materials (bone, lung, water and adipose) are modelled. The phantoms contain a radiation source and a cavity with 0.002 69 cm3 in size, which is a typical volume of a disc type LiF dosimeter. Three x-rays qualities with average energies ranging from 47 to 250 keV, and three brachytherapy sources, 60Co, 192Ir and 137Cs, are considered. Different cavity theory approaches for DCF calculations and different cavity/medium combinations have been considered in this study. DCF values for water/bone and LiF/bone cases have strong dependence with energy increasing as the photon energy increases. DCF values also increase with energy for LiF/lung and water/lung cases but, they are much less dependent of energy. For LiF/adipose, water/adipose and LiF/water cases, the DCF values are also dependent of photon energy but, decreases as the energy increases. Maximum difference of 12% has been found compared to values in literature.


Subject(s)
Brachytherapy , Monte Carlo Method , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Water , Algorithms , Humans , Phantoms, Imaging , Photons , Radiotherapy Dosage , X-Rays
11.
Med Phys ; 42(6): 3048-61, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26127057

ABSTRACT

PURPOSE: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) (192)Ir source and a virtual water phantom were designed, which can be imported into a TPS. METHODS: A hypothetical, generic HDR (192)Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic (192)Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra(®) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS™ ]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR (192)Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. RESULTS: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ace algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 ± 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ace at clinically relevant distances. CONCLUSIONS: A hypothetical, generic HDR (192)Ir source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.


Subject(s)
Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Monte Carlo Method , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Humans , Phantoms, Imaging , Radiotherapy Dosage , Water
12.
Phys Med Biol ; 60(11): 4565-79, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26009538

ABSTRACT

Dose calculation in high dose rate brachytherapy with (192)Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for (192)Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.


Subject(s)
Algorithms , Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Radiation Monitoring/methods , Radiopharmaceuticals/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Radiation Monitoring/standards , Radiotherapy Dosage , Water/chemistry
13.
Phys Med Biol ; 59(19): 5921-35, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25210788

ABSTRACT

Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for (192)Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.


Subject(s)
Brachytherapy/instrumentation , Breast Neoplasms/radiotherapy , Monte Carlo Method , Phantoms, Imaging , Prostheses and Implants , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Brachytherapy/methods , Breast Neoplasms/pathology , Computer Simulation , Female , Humans , Models, Biological , Radiation Protection , Radiotherapy Dosage
14.
Med Phys ; 41(6): 061701, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24877796

ABSTRACT

PURPOSE: The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. METHODS: A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. RESULTS: All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%-15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. CONCLUSIONS: TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study highlights the importance of backscatter to peak skin dose. Tissue heterogeneities, applicator, and patient geometries demonstrate the need for a more robust dose calculation method for low energy brachytherapy sources.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Breast Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Air , Breast/radiation effects , Breast Neoplasms/diagnostic imaging , Computer Simulation , Humans , Mammography , Models, Biological , Monte Carlo Method , Radiotherapy Dosage , Skin/radiation effects , Tomography, X-Ray Computed , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...