Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Genet ; 142(11): 1571-1586, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755482

ABSTRACT

CYP26B1 metabolizes retinoic acid in the developing embryo to regulate its levels. A limited number of individuals with pathogenic variants in CYP26B1 have been documented with a varied phenotypic spectrum, spanning from a severe manifestation involving skull anomalies, craniosynostosis, encephalocele, radio-humeral fusion, oligodactyly, and a narrow thorax, to a milder presentation characterized by craniosynostosis, restricted radio-humeral joint mobility, hearing loss, and intellectual disability. Here, we report two families with CYP26B1-related phenotypes and describe the data obtained from functional studies of the variants. Exome and Sanger sequencing were used for variant identification in family 1 and family 2, respectively. Family 1 reflects a mild phenotype, which includes craniofacial dysmorphism with brachycephaly (without craniosynostosis), arachnodactyly, reduced radioulnar joint movement, conductive hearing loss, learning disability-and compound heterozygous CYP26B1 variants: (p.[(Pro118Leu)];[(Arg234Gln)]) were found. In family 2, a stillborn fetus presented a lethal phenotype with spina bifida occulta, hydrocephalus, poor skeletal mineralization, synostosis, limb defects, and a synonymous homozygous variant in CYP26B1: c.1083C > A. A minigene assay revealed that the synonymous variant created a new splice site, removing part of exon 5 (p.Val361_Asp382del). Enzymatic activity was assessed using a luciferase assay, demonstrating a notable reduction in exogenous retinoic acid metabolism for the variant p.Val361_Asp382del. (~ 3.5 × decrease compared to wild-type); comparatively, the variants p.(Pro118Leu) and p.(Arg234Gln) demonstrated a partial loss of metabolism (1.7× and 2.3× reduction, respectively). A proximity-dependent biotin identification assay reaffirmed previously reported ER-resident protein interactions. Additional work into these interactions is critical to determine if CYP26B1 is involved with other biological events on the ER. Immunofluorescence assay suggests that mutant CYP26B1 is still localized in the endoplasmic reticulum. These results indicate that novel pathogenic variants in CYP26B1 result in varying levels of enzymatic activity that impact retinoic acid metabolism and relate to the distinct phenotypes observed.


Subject(s)
Craniosynostoses , Tretinoin , Humans , Retinoic Acid 4-Hydroxylase/genetics , Tretinoin/metabolism , Homozygote , Exons , Craniosynostoses/genetics
2.
Am J Med Genet A ; 179(7): 1325-1329, 2019 07.
Article in English | MEDLINE | ID: mdl-31074124

ABSTRACT

Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACDMPV) is a rare, autosomal dominant disorder of interstitial lung development, leading to pulmonary hypertension, and death in infancy. Associated features include malformations of the heart, gastrointestinal tract, and genitourinary system. ACDMPV is caused by heterozygous variants in the FOXF1 gene or microdeletions involving FOXF1. We present a male infant with ACDMPV, hypoplastic left heart sequence (HLHS), duodenal atresia, and imperforate anus due to a de novo, in frame deletion in FOXF1: c.209_214del (p.Thr70_Leu71del). Previous reports have suggested that microdeletions involving FOXF1 are associated with ACDMPV with congenital heart defects, including HLHS, gastrointestinal atresias, and other anomalies; whereas likely pathogenic variants within FOXF1 have not been reported with ACDMPV and HLHS. This is the first patient reported with ACDMPV, HLHS, imperforate anus, and duodenal atresia associated with a likely pathogenic variant in the FOXF1 gene.


Subject(s)
Forkhead Transcription Factors/genetics , Hypoplastic Left Heart Syndrome/genetics , Persistent Fetal Circulation Syndrome/genetics , Sequence Deletion , Humans , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...