Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992676

ABSTRACT

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

2.
Nano Lett ; 23(7): 2792-2799, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37010816

ABSTRACT

Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs' electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.

3.
ACS Nano ; 15(11): 18060-18070, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34623816

ABSTRACT

There is an intensive effort to control the nature of attractive interactions between ultrathin semiconductors and metals and to understand its impact on the electronic properties at the junction. Here, we present a photoelectron spectroscopy study on the interface between WS2 films and gold, with a focus on the occupied electronic states near the Brillouin zone center (i.e., the Γ point). To delineate the spectra of WS2 supported on crystalline Au from the suspended WS2, we employ a microscopy approach and a tailored sample structure, in which the WS2/Au junction forms a semi-epitaxial relationship and is adjacent to suspended WS2 regions. The photoelectron spectra, as a function of WS2 thickness, display the expected splitting of the highest occupied states at the Γ point. In multilayer WS2, we discovered variations in the electronic states that spatially align with the crystalline grains of underlying Au. Corroborated by density functional theory calculations, we attribute the electronic structure variations to stacking variations within the WS2 films. We propose that strong interactions exerted by Au grains cause slippage of the interfacing WS2 layer with respect to the rest of the WS2 film. Our findings illustrate that the electronic properties of transition metal dichalcogenides, and more generally 2D layered materials, are physically altered by the interactions with the interfacing materials, in addition to the electron screening and defects that have been widely considered.

4.
Nat Commun ; 12(1): 3267, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34075055

ABSTRACT

Two-dimensional (2D) materials offer unique opportunities in engineering the ultrafast spatiotemporal response of composite nanomechanical structures. In this work, we report on high frequency, high quality factor (Q) 2D acoustic cavities operating in the 50-600 GHz frequency (f) range with f × Q up to 1 × 1014. Monolayer steps and material interfaces expand cavity functionality, as demonstrated by building adjacent cavities that are isolated or strongly-coupled, as well as a frequency comb generator in MoS2/h-BN systems. Energy dissipation measurements in 2D cavities are compared with attenuation derived from phonon-phonon scattering rates calculated using a fully microscopic ab initio approach. Phonon lifetime calculations extended to low frequencies (<1 THz) and combined with sound propagation analysis in ultrathin plates provide a framework for designing acoustic cavities that approach their fundamental performance limit. These results provide a pathway for developing platforms employing phonon-based signal processing and for exploring the quantum nature of phonons.

5.
Nat Commun ; 11(1): 5, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31911592

ABSTRACT

Here we report how two-dimensional crystal (2DC) overlayers influence the recrystallization of relatively thick metal films and the subsequent synergetic benefits this provides for coupling surface plasmon-polaritons (SPPs) to photon emission in 2D semiconductors. We show that annealing 2DC/Au films on SiO2 results in a reverse epitaxial process where initially nanocrystalline Au films gain texture, crystallographically orient with the 2D crystal overlayer, and form an oriented porous metallic network (OPEN) structure in which the 2DC can suspend above or coat the inside of the metal pores. Both laser excitation and exciton recombination in the 2DC semiconductor launch propagating SPPs in the OPEN film. Energy in-/out- coupling occurs at metal pore sites, alleviating the need for dielectric spacers between the metal and 2DC layer. At low temperatures, single-photon emitters (SPEs) are present across an OPEN-WSe2 film, and we demonstrate remote SPP-mediated excitation of SPEs at a distance of 17 µm.

6.
Adv Mater ; 28(30): 6465-70, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27171481

ABSTRACT

A giant bandgap reduction in layered GaTe is demonstrated. Chemisorption of oxygen to the Te-terminated surfaces produces significant restructuring of the conduction band resulting in a bandgap below 0.8 eV, compared to 1.65 eV for pristine GaTe. Localized partial recovery of the pristine gap is achieved by thermal annealing, demonstrating that reversible band engineering in layered semiconductors is accessible through their surfaces.

7.
Nano Lett ; 16(3): 1925-32, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26855162

ABSTRACT

P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

8.
Bioelectrochemistry ; 85: 1-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22154812

ABSTRACT

Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future.


Subject(s)
Alcohol Dehydrogenase/chemistry , Diamond , Electrochemistry/methods , Enzymes, Immobilized/chemistry , Nanoparticles/chemistry , Adsorption , Biocompatible Materials/chemistry , Oxidation-Reduction , Saccharomyces cerevisiae/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...