Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1484, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674585

ABSTRACT

Mechanical stimuli initiate adaptive signal transduction pathways, yet exceeding the cellular capacity to withstand physical stress results in death. The molecular mechanisms underlying trauma-induced degeneration remain unclear. In the nematode C. elegans, we have developed a method to study cellular degeneration in response to mechanical stress caused by blunt force trauma. Herein, we report that physical injury activates the c-Jun kinase, KGB-1, which modulates response elements through the AP-1 transcriptional complex. Among these, we have identified a dual-specificity MAPK phosphatase, VHP-1, as a stress-inducible modulator of neurodegeneration. VHP-1 regulates the transcriptional response to mechanical stress and is itself attenuated by KGB-1-mediated inactivation of a deubiquitinase, MATH-33, and proteasomal degradation. Together, we describe an uncharacterized stress response pathway in C. elegans and identify transcriptional and post-translational components comprising a feedback loop on Jun kinase and phosphatase activity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Dual-Specificity Phosphatases/metabolism , Stress, Mechanical , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Dual-Specificity Phosphatases/genetics , Endopeptidases/metabolism , Gene Knockdown Techniques , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Neurodegenerative Diseases/genetics , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcriptome
2.
Dev Cell ; 51(5): 587-601.e7, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31794717

ABSTRACT

Age-associated decay of intercellular interactions impairs the cells' capacity to tightly associate within tissues and form a functional barrier. This barrier dysfunction compromises organ physiology and contributes to systemic failure. The actin cytoskeleton represents a key determinant in maintaining tissue architecture. Yet, it is unclear how age disrupts the actin cytoskeleton and how this, in turn, promotes mortality. Here, we show that an uncharacterized phosphorylation of a low-abundant actin variant, ACT-5, compromises integrity of the C. elegans intestinal barrier and accelerates pathogenesis. Age-related loss of the heat-shock transcription factor, HSF-1, disrupts the JUN kinase and protein phosphatase I equilibrium which increases ACT-5 phosphorylation within its troponin binding site. Phosphorylated ACT-5 accelerates decay of the intestinal subapical terminal web and impairs its interactions with cell junctions. This compromises barrier integrity, promotes pathogenesis, and drives mortality. Thus, we provide the molecular mechanism by which age-associated loss of specialized actin networks impacts tissue integrity.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Aging/metabolism , Caenorhabditis elegans Proteins/metabolism , Intestinal Mucosa/metabolism , Actins/chemistry , Actins/genetics , Aging/pathology , Animals , Binding Sites , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Intercellular Junctions/metabolism , Intestinal Mucosa/growth & development , JNK Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism , Transcription Factors/metabolism , Troponin/metabolism
3.
Aging (Albany NY) ; 11(1): 115-126, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30622221

ABSTRACT

The brain can generate new neurons from neural stem cells throughout life. However, the capacity for neurogenesis declines with age, reducing the potential for learning and repair. We explored the effects of calorie restriction, an established anti-aging intervention, on neural stem cells in the subventricular zone of young and aged mice. Calorie restriction transiently enhanced proliferation of neural progenitor cells in young, but not aged mice. However, calorie restriction prevented the age-related loss of neurogenesis in the aged brain. Calorie-restricted mice showed enhanced olfactory memory compared with ad libitum-fed controls, suggesting that calorie restriction can produce functional improvements in the aged brain. Calorie restriction also mitigated the age-related activation of microglia and subsequent increase in pro-inflammatory cytokines. Likewise, calorie restriction prevented increases in senescent cells normally observed in the subventricular zone in aged mice, further protecting this neurogenic niche from pro-inflammatory signals. Together, these data suggest that calorie restriction protects the subventricular zone microenvironment from age-related inflammation, thereby preserving neurogenesis into old age.


Subject(s)
Aging , Caloric Restriction , Cellular Senescence/physiology , Lateral Ventricles/cytology , Neural Stem Cells/physiology , Animals , Female , Male , Mice
4.
Redox Biol ; 12: 8-17, 2017 08.
Article in English | MEDLINE | ID: mdl-28212525

ABSTRACT

Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD); however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus) that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4), a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD.


Subject(s)
Cognitive Dysfunction/genetics , Glutathione Peroxidase/genetics , Neurodegenerative Diseases/genetics , Prosencephalon/metabolism , Animals , Cell Death , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Disease Models, Animal , Gene Knockout Techniques , Glutathione Peroxidase/metabolism , Lipid Peroxidation , Maze Learning , Mice , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Oxidation-Reduction , Phospholipid Hydroperoxide Glutathione Peroxidase , Prosencephalon/cytology , Tamoxifen/adverse effects
5.
Brain Res ; 1655: 270-276, 2017 01 15.
Article in English | MEDLINE | ID: mdl-26801829

ABSTRACT

Neurogenesis in mammals occurs throughout life in two brain regions: the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Development and regulation of the V-SVZ and SGZ is unique to each brain region, but with several similar characteristics. Alterations to the production of new neurons in neurogenic regions have been linked to psychiatric and neurodegenerative disorders. Decline in neurogenesis in the SGZ correlates with affective and psychiatric disorders, and can be reversed by antidepressant and antipsychotic drugs. Likewise, neurogenesis in the V-SVZ can also be enhanced by antidepressant drugs. The regulation of neurogenesis by neurotransmitters, particularly monoamines, in both regions suggests that aberrant neurotransmitter signaling observed in psychiatric disease may play a role in the pathology of these mental health disorders. Similarly, the cognitive deficits that accompany neurodegenerative disease may also be exacerbated by decreased neurogenesis. This review explores the regulation and function of neural stem cells in rodents and humans, and the involvement of factors that contribute to psychiatric and cognitive deficits. This article is part of a Special Issue entitled SI:StemsCellsinPsychiatry.


Subject(s)
Adult Stem Cells/physiology , Mental Disorders/physiopathology , Neurogenesis/physiology , Animals , Brain/physiopathology , Humans , Neurotransmitter Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...