Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Public Health ; 2021: 1304139, 2021.
Article in English | MEDLINE | ID: mdl-33510799

ABSTRACT

Acute physical exercise can modulate immune function. For example, acute exercise is known to increase the circulating concentration of cytokines. Exercise is also known to modulate immune function chronically. It is not known whether exercise training can result in training of the immune system. Here, we investigated the effects of six weeks of aerobic training on cytokine responses induced by acute exercise until fatigue. Twelve healthy men performed a fatiguing exercise at the anaerobic threshold (AT) intensity. After the training period, the participants performed another bout of acute exercise at the same duration and intensity of the pretraining situation. The analysis was made at the beginning, end, and at 10, 30, and 60 minutes during the recovery period. Training at AT induced a gain of 11.2% of exercise capacity. Before training, a single bout of acute exercise induced a significant increase in plasma levels of cytokines, including IL-6, TNF-α, sTNFR1, IL-10, CXCL10, BDNF, leptin, resistin, and adiponectin. After six weeks of aerobic training, levels of IL-6, sTNFR1, BDNF, and leptin increased to a lesser extent after an acute bout exercise at the same absolute intensity as the pretraining period. Responses to the same relative exercise intensity were similar to those observed before exercise. These results show that aerobic training is associated with training of acute immune responses to acute exercise until fatigue.


Subject(s)
Cytokines/blood , Exercise , Adult , Anaerobic Threshold , Humans , Male
2.
Eur J Appl Physiol ; 113(4): 965-73, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23053123

ABSTRACT

The purpose of this study was to investigate the effects of a 6-week aerobic training period on the time to fatigue (t lim) during exercise performed at the maximal lactate steady state (MLSS). Thirteen untrained male subjects (TG; age 22.5 ± 2.4 years, body mass 72.9 ± 6.7 kg and VO2max 44.9 ± 4.8 mL kg(-1) min(-1)) performed a cycle ergometer test until fatigue at the MLSS power output before and after 6 weeks of aerobic training. A group of eight control subjects (CG; age 25.1 ± 2.4 years, body mass 70.1 ± 9.8 kg and VO2max 45.2 ± 4.1 mL kg(-1) min(-1)) also performed the two tests but did not train during the 6-week period. There were no differences between the groups with respect to the VO2max or MLSS power output (MLSSw) before the treatment period. The VO2max and the MLSSw of the TG increased by 11.2 ± 7.2 % (pre-treatment = 44.9 ± 4.8 vs. post-treatment = 49.8 ± 4.5 mL kg(-1) min(-1)) and 14.7 ± 8.9 % (pre-treatment = 150 ± 27 vs. post-treatment = 171 ± 26 W), respectively, after 6 weeks of training. The results of the CG were unchanged. There were no differences in t lim between the groups or within groups before and after training. Six weeks of aerobic training increases MLSSw and VO2max, but it does not alter the t lim at the MLSS.


Subject(s)
Exercise , Lactic Acid/blood , Muscle Contraction , Muscle Fatigue , Muscle, Skeletal/metabolism , Oxygen Consumption , Adiposity , Adult , Anaerobic Threshold , Analysis of Variance , Bicycling , Biomarkers/blood , Brazil , Exercise Test , Heart Rate , Humans , Male , Muscle Strength , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...