Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760962

ABSTRACT

To robustly discover and explore phytocompounds, it is necessary to evaluate the interrelationships between the plant species, plant tissue, and the extraction process on the extract composition and to predict its cytotoxicity. The present work evaluated how Fourier Transform InfraRed spectroscopy can acquire the molecular profile of aqueous and ethanol-based extracts obtained from leaves, seeds, and flowers of Cynara Cardunculus, and ethanol-based extracts from Matricaria chamomilla flowers, as well the impact of these extracts on the viability of mammalian cells. The extract molecular profile enabled to predict the extraction yield, and how the plant species, plant tissue, and extraction process affected the extract's relative composition. The molecular profile obtained from the culture media of cells exposed to extracts enabled to capture its impact on cells metabolism, at a higher sensitivity than the conventional assay used to determine the cell viability. Furthermore, it was possible to detect specific impacts on the cell's metabolism according to plant species, plant tissue, and extraction process. Since spectra were acquired on small volumes of samples (25 µL), after a simple dehydration step, and based on a plate with 96 wells, the method can be applied in a rapid, simple, high-throughput, and economic mode, consequently promoting the discovery of phytocompounds.

2.
Methods Protoc ; 7(3)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38804330

ABSTRACT

Robust data normalization and analysis are pivotal in biomedical research to ensure that observed differences in populations are directly attributable to the target variable, rather than disparities between control and study groups. ArsHive addresses this challenge using advanced algorithms to normalize populations (e.g., control and study groups) and perform statistical evaluations between demographic, clinical, and other variables within biomedical datasets, resulting in more balanced and unbiased analyses. The tool's functionality extends to comprehensive data reporting, which elucidates the effects of data processing, while maintaining dataset integrity. Additionally, ArsHive is complemented by A.D.A. (Autonomous Digital Assistant), which employs OpenAI's GPT-4 model to assist researchers with inquiries, enhancing the decision-making process. In this proof-of-concept study, we tested ArsHive on three different datasets derived from proprietary data, demonstrating its effectiveness in managing complex clinical and therapeutic information and highlighting its versatility for diverse research fields.

3.
ACS Omega ; 8(23): 20755-20766, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37323376

ABSTRACT

Biofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated. The metabolome was analyzed by ultraperformance liquid chromatography associated with tandem mass spectrometry (UPLC-MS/MS), based on reverse-phase and hydrophobic chromatographic separations, and Fourier transform infrared (FTIR) spectroscopy. The two extraction protocols of the metabolome were compared over the analytical platforms (UPLC-MS/MS and FTIR spectroscopy) concerning the number of features, the type of features, common features, and the reproducibility of extraction replicas and analytical replicas. The ability of the extraction protocols to predict the survivability of critically ill patients hospitalized at an intensive care unit was also evaluated. The FTIR spectroscopy platform was compared to the UPLC-MS/MS platform and, despite not identifying metabolites and consequently not contributing as much as UPLC-MS/MS in terms of information concerning metabolic information, it enabled the comparison of the two extraction protocols as well as the development of very good predictive models of patient's survivability, such as the UPLC-MS/MS platform. Furthermore, FTIR spectroscopy is based on much simpler procedures and is rapid, economic, and applicable in the high-throughput mode, i.e., enabling the simultaneous analysis of hundreds of samples in the microliter range in a couple of hours. Therefore, FTIR spectroscopy represents a very interesting complementary technique not only to optimize processes as the metabolome isolation but also for obtaining biomarkers such as those for disease prognosis.

4.
Medicina (Kaunas) ; 60(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38256320

ABSTRACT

Background and Objectives: Given the wide spectrum of clinical and laboratory manifestations of the coronavirus disease 2019 (COVID-19), it is imperative to identify potential contributing factors to patients' outcomes. However, a limited number of studies have assessed how the different waves affected the progression of the disease, more so in Portugal. Therefore, our main purpose was to study the clinical and laboratory patterns of COVID-19 in an unvaccinated population admitted to the intensive care unit, identifying characteristics associated with death, in each of the first three waves of the pandemic. Materials and Methods: This study included 337 COVID-19 patients admitted to the intensive care unit of a single-center hospital in Lisbon, Portugal, between March 2020 and March 2021. Comparisons were made between three COVID-19 waves, in the second (n = 325) and seventh (n = 216) days after admission, and between discharged and deceased patients. Results: Deceased patients were considerably older (p = 0.021) and needed greater ventilatory assistance (p = 0.023), especially in the first wave. Differences between discharged and deceased patients' biomarkers were minimal in the first wave, on both analyzed days. In the second wave significant differences emerged in troponins, lactate dehydrogenase, procalcitonin, C-reactive protein, and white blood cell subpopulations, as well as platelet-to-lymphocyte and neutrophil-to-lymphocyte ratios (all p < 0.05). Furthermore, in the third wave, platelets and D-dimers were also significantly different between patients' groups (all p < 0.05). From the second to the seventh days, troponins and lactate dehydrogenase showed significant decreases, mainly for discharged patients, while platelet counts increased (all p < 0.01). Lymphocytes significantly increased in discharged patients (all p < 0.05), while white blood cells rose in the second (all p < 0.001) and third (all p < 0.05) waves among deceased patients. Conclusions: This study yields insights into COVID-19 patients' characteristics and mortality-associated biomarkers during Portugal's first three COVID-19 waves, highlighting the importance of considering wave variations in future research due to potential significant outcome differences.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Portugal/epidemiology , Retrospective Studies , L-Lactate Dehydrogenase , Biomarkers , Troponin
5.
Metabolites ; 12(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35208167

ABSTRACT

Current infection biomarkers are highly limited since they have low capability to predict infection in the presence of confounding processes such as in non-infectious inflammatory processes, low capability to predict disease outcomes and have limited applications to guide and evaluate therapeutic regimes. Therefore, it is critical to discover and develop new and effective clinical infection biomarkers, especially applicable in patients at risk of developing severe illness and critically ill patients. Ideal biomarkers would effectively help physicians with better patient management, leading to a decrease of severe outcomes, personalize therapies, minimize antibiotics overuse and hospitalization time, and significantly improve patient survival. Metabolomics, by providing a direct insight into the functional metabolic outcome of an organism, presents a highly appealing strategy to discover these biomarkers. The present work reviews the desired main characteristics of infection biomarkers, the main metabolomics strategies to discover these biomarkers and the next steps for developing the area towards effective clinical biomarkers.

6.
Article in English | MEDLINE | ID: mdl-31395547

ABSTRACT

We present a method to compress geometry information of point clouds that explores redundancies across consecutive frames of a sequence. It uses octrees and works by progressively increasing resolution of the octree. At each branch of the tree, we generate an approximation of the child nodes by a number of methods which are used as contexts to drive an arithmetic coder. The best approximation, i.e. the context that yields the least amount of encoding bits, is selected and the chosen method is indicated as side information for replication at the decoder. The core of our method is a context-based arithmetic coder in which a reference octree is used as reference to encode the current octree, thus providing 255 contexts for each output octet. The 255×255 frequency histogram is viewed as a discrete 3D surface and is conveyed to the decoder using another octree. We present two methods to generate the predictions (contexts) which use adjacent frames in the sequence (inter-frame) and one method that works purely intra-frame. The encoder continuously switches the best mode among the three and conveys such information to the decoder. Since an intra-frame prediction is present, our coder can also work in purely intra-frame mode, as well. Extensive results are presented to show the method's potential against many compression alternatives for the geometry information in dynamic voxelized point clouds.

SELECTION OF CITATIONS
SEARCH DETAIL
...