Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trans R Soc Trop Med Hyg ; 106(11): 645-52, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23032082

ABSTRACT

Solar water disinfection (SODIS) is a type of treatment that can significantly improve the microbiological quality of drinking water at household level and therefore prevent waterborne diseases in developing countries. Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrhoeal disease cryptosporidiosis in humans and animals. Recently, this parasite has been selected by the WHO as a reference pathogen for protozoan parasites in the evaluation of household water treatment options. In this study, the field efficacy of different static solar reactors [1.5 l transparent plastic polyethylene terephthalate (PET) bottles as well as 2.5 l borosilicate glass and 25 l methacrylate reactors fitted with compound parabolic concentrators (CPC)] for solar disinfection of turbid waters experimentally contaminated with C. parvum oocysts was compared. Potential oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. The results demonstrate that static solar reactors fitted with CPCs are an excellent alternative to the conventional SODIS method with PET bottles. These reactors improved the efficacy of the SODIS method by enabling larger volumes of water to be treated and, in some cases, the C. parvum oocysts were rendered totally unviable, minimising the negative effects of turbidity.


Subject(s)
Cryptosporidiosis/prevention & control , Cryptosporidium parvum/radiation effects , Disinfection/methods , Oocysts/radiation effects , Sunlight , Water Purification/methods , Water/parasitology , Animals , Bioreactors , Developing Countries , Humans , Polyethylene Terephthalates , Temperature , Water Supply
2.
Acta Trop ; 124(3): 235-42, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22944729

ABSTRACT

Water samples of 0, 5, and 100 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight in 2.5l static borosilicate solar reactors fitted with two different compound parabolic concentrators (CPCs), CPC1 and CPC1.89, with concentration factors of the solar radiation of 1 and 1.89, respectively. The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. Thus, the initial global oocyst viability of the C. parvum isolate used was 95.3 ± 1.6%. Using the solar reactors fitted with CPC1, the global viability of oocysts after 12h of exposure was zero in the most turbid water samples (100 NTU) and almost zero in the other water samples (0.3 ± 0.0% for 0 NTU and 0.5 ± 0.2% for 5 NTU). Employing the solar reactors fitted with CPC1.89, after 10h exposure, the global oocyst viability was zero in the non-turbid water samples (0 NTU), and it was almost zero in the 5 NTU water samples after 8h of exposure (0.5 ± 0.5%). In the most turbid water samples (100 NTU), the global viability was 1.9 ± 0.6% after 10 and 12h of exposure. In conclusion, the use of these 2.5l static solar reactors fitted with CPCs significantly improved the efficacy of the SODIS technique as these systems shorten the exposure times to solar radiation, and also minimize the negative effects of turbidity. This technology therefore represents a good alternative method for improving the microbiological quality of household drinking water in developing countries.


Subject(s)
Cryptosporidium parvum/physiology , Cryptosporidium parvum/radiation effects , Disinfection/methods , Sunlight , Water/parasitology , Cell Survival/radiation effects , Humans , Oocysts/physiology , Oocysts/radiation effects
3.
Trop Med Int Health ; 14(6): 620-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19570059

ABSTRACT

OBJECTIVE: To investigate the efficacy of the solar water disinfection (SODIS) method for inactivating Cryptosporidium parvum oocysts in turbid waters using 1.5 l polyethylene terephthalate (PET) bottles under natural sunlight. METHODS: All experiments were performed at the Plataforma Solar de Almería, located in the Tabernas Desert (Southern Spain) in July and October 2007. Turbid water samples [5, 100 and 300 nephelometric turbidity units (NTU)] were prepared by addition of red soil to distilled water, and then spiked with purified C. parvum oocysts. PET bottles containing the contaminated turbid waters were exposed to full sunlight for 4, 8 and 12 h. The samples were then concentrated by filtration and the oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. Results After an exposure time of 12 h (cumulative global dose of 28.28 MJ/m(2); cumulative UV dose of 1037.06 kJ/m(2)) the oocyst viabilities were 11.54%, 25.96%, 41.50% and 52.80% for turbidity levels of 0, 5, 100 and 300 NTU, respectively, being significantly lower than the viability of the initial isolate (P < 0.01). CONCLUSIONS: SODIS method significantly reduced the potential viability of C. parvum oocysts on increasing the percentage of oocysts that took up the dye PI (indicator of cell wall integrity), although longer exposure periods appear to be required than those established for the bacterial pathogens usually tested in SODIS assays. SODIS.


Subject(s)
Cryptosporidium parvum/radiation effects , Disinfection/methods , Fresh Water/parasitology , Sunlight , Water Purification/methods , Animals , Cryptosporidium parvum/growth & development , Cryptosporidium parvum/isolation & purification , Cryptosporidium parvum/metabolism , Dose-Response Relationship, Radiation , Nephelometry and Turbidimetry , Oocysts/growth & development , Oocysts/radiation effects , Polyethylene Terephthalates/pharmacokinetics , Temperature
4.
Parasitology ; 136(4): 393-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19195413

ABSTRACT

Species belonging to the genera Cryptosporidium are recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated with Cryptosporidium parvum oocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37-50 degrees C), on the excystation of C. parvum in the absence of other stimuli. In samples exposed to 40-48 degrees C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53.81% of excystation was obtained on exposure of the water to a temperature of 46 degrees C for 12 h (versus 8.80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19.38% versus 100%). The results demonstrate the important effect of the temperature on the excystation of C. parvum and therefore on its viability and infectivity.


Subject(s)
Cryptosporidium parvum/physiology , Cryptosporidium parvum/radiation effects , Disinfection/methods , Oocysts/radiation effects , Sunlight , Animals , Cryptosporidiosis/parasitology , Cryptosporidiosis/pathology , Cryptosporidium parvum/pathogenicity , Disease Models, Animal , Mice , Oocysts/growth & development , Temperature , Water/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...