Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(39): e202309295, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37535392

ABSTRACT

The borylation of Csp3 -H bonds is a challenging transformation that is typically restricted to transition metal catalysis. Herein, we report the site-selective metal-free Csp3 -H borylation of saturated cyclic amines. It is possible to selectively borylate piperidine derivatives at the α or ß positions according to the reaction conditions. The mechanism was supported by NMR spectroscopy, calorimetry experiments and density functional theory (DFT) computations. It suggests that the piperidine is dehydrogenated by complexation with BBr3 to produce an enamine intermediate, which is in turn borylated at either the α or ß position according to the reaction conditions.

2.
ACS Appl Mater Interfaces ; 13(23): 27019-27028, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34080830

ABSTRACT

Gas solubility can go beyond classical bulk-liquid Henry's law saturation under the nanoconfinement of a liquid phase. This concept establishes the foundation of the current study for developing a novel catalytic system for transformation of carbon dioxide to cyclic carbonates at mild conditions with major emphasis on application for CO2 capture and utilization. A series of mesoporous silica-based supports of various pore sizes and shapes grafted with a quaternary ammonium salt is synthesized and characterized. CO2 sorption in styrene oxide, either in bulk or nanoconfined state, as well as catalytic reactivity for CO2 transformation into styrene carbonate, are experimentally evaluated. The family of mesoporous catalysts with aligned cylindrical pores (MCM-41 and SBA-15) with pore sizes ranging from 3.5 to 9 nm exhibit enhanced sorption of CO2 in nanoconfined styrene oxide with maximum sorption capacity taking place in MCM-41 with the smallest pore size. The catalysts with interconnected cylindrical pores (KIT-6) with pore sizes ranging from 4.5 to 8.7 nm showed CO2 solubilities almost equal to the bulk solubility of styrene oxide. Monte Carlo simulations revealed that the oversolubility in styrene oxide confined complex is directly related to the density of adsorbed solvent in the nanopore, which is less than its bulk density. Catalytic reactivities correlate with CO2 sorption enhancement, showing higher turnover frequencies for catalysts having higher CO2 sorption capacity. The turnover frequency is increased by a factor of 7.5 for grafted MCM-41 with the smallest pore size with nanoconfined styrene oxide in comparison to the homogeneous reaction implemented in bulk.

3.
RSC Adv ; 11(51): 31941-31949, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-35495511

ABSTRACT

We report that boric acid, BO3H3, is a good precatalyst for the BH3-catalyzed hydroboration of esters using pinacolborane as a borylation agent. Using microwave irradiation as an energy source, we demonstrated that a dozen esters were converted into the corresponding boronate ethers in good yields. It was also possible to use boric acid as a precatalyst to reduce carbonates and alkynes. Considering the hazardous and pyrophoric nature of BH3 solutions, boric acid proves to be a safe and green precatalyst for the metal-free reduction of unsaturated species.

4.
ACS Appl Mater Interfaces ; 12(51): 57003-57016, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33300788

ABSTRACT

Rare earth elements (REEs) and their compounds are essential for rapidly developing modern technologies. These materials are especially critical in the area of green/sustainable energy; however, only very high-purity fractions are appropriate for these applications. Yet, achieving efficient REE separation and purification in an economically and environmentally effective way remains a challenge. Moreover, current extraction technologies often generate large amounts of undesirable wastes. In that perspective, the development of selective, reusable, and extremely efficient sorbents is needed. Among numerous ligands used in the liquid-liquid extraction (LLE) process, the diglycolamide-based (DGA) ligands play a leading role. Although these ligands display notable extraction performance in the liquid phase, their extractive chemistry is not widely studied when such ligands are tethered to a solid support. A detailed understanding of the relationship between chemical structure and function (i.e., extraction selectivity) at the molecular level is still missing although it is a key factor for the development of advanced sorbents with tailored selectivity. Herein, a series of functionalized mesoporous silica (KIT-6) solid phases were investigated as sorbents for the selective extraction of REEs. To better understand the extraction behavior of these sorbents, different spectroscopic techniques (solid-state NMR, X-ray photoelectron spectroscopy, XPS, and Fourier transform infrared spectroscopy, FT-IR) were implemented. The obtained spectroscopic results provide useful insights into the chemical environment and reactivity of the chelating ligand anchored on the KIT-6 support. Furthermore, it can be suggested that depending on the extracted metal and/or structure of the ligand and its attachment to KIT-6, different functional groups (i.e., C═O, N-H, or silanols) act as the main adsorption centers and preferentially capture targeted elements, which in turn may be associated with the different selectivity of the synthesized sorbents. Thus, by determining how metals interact with different supports, we aim to better understand the solid-phase extraction process of hybrid (organo)silica sorbents and design better extraction materials.

5.
J Am Chem Soc ; 141(31): 12305-12311, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31283206

ABSTRACT

The potential advantages of using arylboronic esters as boron sources in C-H borylation are discussed. The concept is showcased using commercially available 2-mercaptopyridine as a metal-free catalyst for the transfer borylation of heteroarenes using arylboronates as borylation agents. The catalysis shows a unique functional group tolerance among C-H borylation reactions, tolerating notably terminal alkene and alkyne functional groups. The mechanistic investigation is also described.

6.
ACS Appl Mater Interfaces ; 11(26): 23681-23691, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31117444

ABSTRACT

The separation and preconcentration of rare earth elements (REEs) from mineral concentrates in an economically and environmentally sustainable manner are difficult tasks due to their similar physicochemical properties. Herein, a series of tetradentate phenylenedioxy diamide (PDDA) ligands were synthesized and grafted on large-pore three-dimensional KIT-6 mesoporous silica. In solid-phase extraction, the hybrid sorbents enable a size-selective separation of REEs on the basis of the bite angles of the ligands. In particular, smaller REE3+ ions are preferentially extracted by KIT-6-1,2-PDDA, whereas light REEs with larger ionic radius are favored by KIT-6-1,3-PDDA. The exposure of bauxite residue digestion solution containing REEs as well as a number of types of competitive ions (including Th and U) to the sorbents results in selective recovery of target REEs. The possibility of regenerating the mesoporous sorbents through a simple loading-stripping-regeneration process is demonstrated over up to five cycles with no significant loss in REE extraction capacity, suggesting adequate chemical and structural stability of the new sorbent materials.

7.
Dalton Trans ; 48(15): 4846-4856, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30869102

ABSTRACT

Three polymeric versions of ansa-N,N-dialkylammoniumtrifluoroborate ambiphilic molecules based on the styrene motif (poly(1-NMe2H+-2-BF3--4-styrene) (P-Me), poly(1-NEt2H+-2-BF3--4-styrene) (P-Et) and poly(1-piperidinyl-H+-2-BF3--4-styrene) (P-Pip)) were synthesized, characterized and tested as heterogeneous pre-catalysts for the borylation of electron-rich heteroarenes. These heterogeneous versions of previously reported pre-catalysts show similar reactivity patterns and represent the first examples of solid-supported FLP metal-free catalysts for the C-H borylation of heteroarenes.

8.
Chem Sci ; 9(22): 5057-5063, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29938036

ABSTRACT

While the dearomatization of indoles by carbon-boron bond forming reactions is new and quite promising, they are so far mainly metal-catalyzed. Here, we establish the use of metal-free catalysts in promoting such reactions in an atom-efficient way. The in situ generated ambiphilic aminoborane catalyst (1-Pip-2-BH2-C6H4)2 (Pip = piperidyl) promotes borylative dearomatization of various 1-arylsulfonyl indoles with pinacolborane in a syn addition fashion, with H and Bpin groups added respectively to the 2 and 3 positions of indoles. Catalysis proceeds with good to excellent conversion and essentially with complete regio- and diastereoselectivity. From mechanistic insights and DFT computations, we realized and established that prototypical boranes can also catalyze this borylative dearomatization.

9.
Chem Rec ; 18(7-8): 1261-1276, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29806123

ABSTRACT

Over the past decades, the need for rare earth elements (REEs) has increased substantially, mostly because these elements are used as valuable additives in advanced technologies. However, the difference in ionic radius between neighboring REEs is small, which renders an efficient sized-based separation extremely challenging. Among different types of extraction methods, solid-phase extraction (SPE) is a promising candidate, featuring high enrichment factor, rapid adsorption kinetics, reduced solvent consumption and minimized waste generation. The great challenge remains yet to develop highly efficient and selective adsorbents for this process. In this regard, ordered mesoporous materials (OMMs) possess high specific surface area, tunable pore size, large pore volume, as well as stable and interconnected frameworks with active pore surfaces for functionalization. Such features meet the requirements for enhanced adsorbents, not only providing huge reactional interface and large surface capable of accommodating guest species, but also enabling the possibility of ion-specific binding for enrichment and separation purposes. This short personal account summarizes some of the recent advances in the use of porous hybrid materials as selective sorbents for REE separation and purification, with particular attention devoted to ordered mesoporous silica and carbon-based sorbents.

10.
ACS Appl Mater Interfaces ; 10(15): 13199-13210, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29521092

ABSTRACT

Conventional amines and phosphines, such as diethylenetriamine, diphenylpropylphosphine, triethylamine, and tetramethylpiperidine, were grafted or impregnated on the surface of metalated SBA-15 materials, such as Ti-, Al-, and Zr-SBA-15, to generate air-stable solid-supported Lewis acid-base pairs. The Lewis acidity of the metalated materials before and after the introduction of Lewis bases was verified by means of pyridine adsorption-Fourier transform infrared spectroscopy. Detailed characterization of the materials was achieved by solid-state 13C and 31P MAS NMR spectroscopy, low-temperature N2 physisorption, X-ray photoelectron spectroscopy, and energy-dispersive X-ray mapping analyses. Study of their potential interactions with CO2 was performed using CO2 adsorption isotherm experiments, which provided new insights into their applicability as solid CO2 adsorbents. A correlation between solid-supported Lewis acid-base pair strength and the resulting affinity to CO2 is discussed based on the calculation of isosteric enthalpy of adsorption.

11.
Acc Chem Res ; 51(2): 454-464, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29308653

ABSTRACT

Ambiphilic molecules were first used as functional ligands for transition elements, which could enable intriguing organometallic transformations. In the past decade, these intramolecular Lewis pairs, first considered organometallic curiosities, have become staples in organometallic chemistry and catalysis, acting as Z ligands, activating inert molecules using the concept of frustrated Lewis pair (FLP) chemistry, and acting as metal-free catalysts. In this Account, we detail our contribution to this blossoming field of research, focusing on the use of ambiphilic molecules as metal-free catalysts for CO2 reduction and C-H borylation reactions. A major emphasis is put on the mechanistic investigations we carried out using reactivity studies and theoretical tools, which helped us steer our research from stoichiometric transformations to highly active catalytic processes. We first report the interaction of aluminum-phosphine ambiphilic molecules with carbon dioxide. Although these Lewis pairs can bind CO2, a study of the deactivation process in the presence of CO2 and hydroboranes led us to discover that simple phosphinoborane molecules could act as active precatalysts for the hydroboration of carbon dioxide into methanol precursors. In these systems, the Lewis basic sites interact with the reducing agents rather than with the electrophilic carbon of CO2, increasing the nucleophilicity of hydroboranes. Simultaneously, the weak Lewis acids stabilize the oxygen of the gas molecule in the transition state, leading to high reaction rates. Replacing the phosphine by an amine leads to a system enabling CO2 hydrogenation, albeit only in stoichiometric transformations. Investigation of the protodeborylation deactivation of aminoboranes led us to develop metal-free catalysts for the C-H borylation of heteroarenes. By protecting the Lewis acid sites of these catalysts using fluoride, we were able to synthesize practical, air-stable precatalysts allowing the convenient synthesis of heteroarylboronic esters on a multigram scale. Contrary to general perception of FLP chemistry, we also demonstrated that a significant increase in activity could be obtained by reducing the steric bulk around the active site. These smaller systems exist as stable dimers and are more energetically costly to dissociate into active FLPs, but the approach of the substrate and the C-H activation step are significantly favored compared to the bulkier analogues. An in-depth study of the stability and reactivity of these aminoborane molecules also allowed us to develop a metal-free catalytic S-H bond borylation system, and to report stoichiometric and spontaneous B-B bond formation and Csp3-H bond activation processes, highlighting the importance of H2 release as a thermodynamic driving force in these FLP transformations.

12.
ACS Appl Mater Interfaces ; 9(44): 38584-38593, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-28968062

ABSTRACT

Separating the rare earth elements (REEs) in an economically and environmentally sustainable manner is one of the most pressing technological issues of our time. Herein, a series of preorganized bidentate phthaloyl diamide (PA) ligands was synthesized and grafted on large-pore 3-dimensional (3-D) KIT-6 mesoporous silica. The synthesized sorbents were fully characterized by N2 physisorption, FT-IR, 13C cross-polarization (CP) and 29Si magic-angle spinning (MAS) NMR, thermogravimetric analysis-differential thermal analysis (TGA-DTA), and elemental analysis. Overall, the grafting of PA-type ligands was found to have significantly improved the extraction performance of the sorbents toward REEs compared to the homogeneous analogues. Specifically, the sorbent modified with the 1,2-phtaloyl ligand shows high preference over lanthanides with smaller size, whereas the 1,3-phtaloyl ligand exhibits selectivity toward elements with larger ion radius. This selectivity drastically changes from the homogeneous models that do not exhibit any selectivity. The possibility of regenerating the mesoporous sorbents through simple stripping using oxalate salt is demonstrated over up to 10 cycles with no significant loss in REEs extraction capacity, suggesting adequate chemical and structural stability of the new sorbent materials. Despite the complex ion matrix and high ionic composition, the exposure of industrial mining deposits containing REEs to the sorbents results in selective recovery of target REEs.

13.
Chem Sci ; 8(5): 3913-3925, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28966781

ABSTRACT

Direct (hetero)arylation polymerization (DHAP) has emerged as a valuable and atom-economical alternative to traditional cross-coupling methods for the synthesis of low-cost and efficient conjugated polymers for organic electronics. However, when applied to the synthesis of certain (hetero)arene-based materials, a lack of C-H bond selectivity has been observed. To prevent such undesirable side-reactions, we report the design and synthesis of new, bulky, phosphine-based ligands that significantly enhance selectivity of the DHAP process for both halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. To better understand the selectivity issues, density functional theory (DFT) calculations have been performed on various halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. Calculations showed that the presence of bromine atoms decreases the energy of activation (Ea) of the adjacent C-H bonds, allowing undesirable ß-defects for some brominated aromatic units. Both calculations and the new ligands should lead to the rational design of monomers and methods for the preparation of defect-free conjugated polymers from DHAP.

14.
J Am Chem Soc ; 139(41): 14714-14723, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28901757

ABSTRACT

Two novel frustrated Lewis pair (FLP) aminoboranes, (1-Pip-2-BH2-C6H4)2 (2; Pip = piperidyl) and (1-NEt2-2-BH2-C6H4)2 (3; NEt2 = diethylamino), were synthesized, and their structural features were elucidated both in solution and in the solid state. The reactivity of these species for the borylation of heteroarenes was investigated and compared to previously reported (1-TMP-2-BH2-C6H4)2 (1; TMP = tetramethylpiperidyl) and (1-NMe2-2-BH2-C6H4)2 (4; NMe2 = dimethylamino). It was shown that 2 and 3 are more active catalysts for the borylation of heteroarenes than the bulkier analogue 1. Kinetic studies and density functional theory calculations were performed with 1 and 2 to ascertain the influence of the amino group of this FLP-catalyzed transformation. The C-H activation step was found to be more facile with smaller amines at the expense of a more difficult dissociation of the dimeric species. The bench-stable fluoroborate salts of all catalysts (1F-4F) have been synthesized and tested for the borylation reaction. The new precatalysts 2F and 3F are showing higher reaction rates and yields for multigram-scale syntheses.

15.
Philos Trans A Math Phys Eng Sci ; 375(2101)2017 08 28.
Article in English | MEDLINE | ID: mdl-28739963

ABSTRACT

In this concept article, we consider the notion of 'frustrated Lewis pairs' (FLPs). While the original use of the term referred to steric inhibition of dative bond formation in a Lewis pair, work in the intervening decade demonstrates the limitation of this simplistic view. Analogies to known transition metal chemistry and the applications in other areas of chemistry are considered. In the light of these findings, we present reflections on the criteria for a definition of the term 'frustrated Lewis pair'. Segregation of the Lewis acid and base and the kinetic nature of FLP reactivity are discussed. We are led to the conclusion that, while an all-inclusive definition of FLP is challenging, the notion of 'FLP chemistry' is more readily recognized.This article is part of the themed issue 'Frustrated Lewis pair chemistry'.

16.
Dalton Trans ; 46(12): 3864-3876, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28251214

ABSTRACT

Water-tolerant supported Lewis acids are actively sought after, in particular to address the challenging direct amidation reaction. To this aim, a versatile and easy synthesis of large pore silica materials with supported Ti-, Al-, Zr-Lewis acids, using acetyl acetonate as a metal-stabilizing agent, was accomplished. The formation of bulk metal oxides was not observed, even at high concentrations of metal species. The Lewis acidity was demonstrated using quantitative and qualitative titration techniques using a series of Hammett indicators, such as butter yellow, phenylazodiphenylphosphine and dicinnamalacetone. The optimal concentration of metals corresponding to the highest Lewis acidity of solids was found to be 4% for Al-SBA-15, 12-15% for Ti-SBA-15 and 7% for Zr-SBA-15 materials. The water-tolerance of the supported metal centers was explored by a pyridine adsorption-FTIR study before and after water addition. The metalated materials were used as water-tolerant heterogeneous catalysts for the amidation of electron-poor and bulky amines, such as substituted anilines and morpholine, obtaining 59-99% yield of the corresponding amides.

17.
Chemistry ; 23(15): 3567-3571, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28133833

ABSTRACT

The cleavage of a Csp3 -H bond by an N/B frustrated Lewis pair (FLP) is reported. Upon mild heating, the ambiphilic molecule (2-NMe2 -C6 H4 )2 BH activates the C-H bond of a methyl group in α position of a nitrogen atom to generate an unprecedented N-B heterocycle. Upon further heating, the novel species rearranges through a hydride abstraction/1,2-aryl shift sequence. The mechanistic details of these transformations are investigated by quantum mechanical calculations.

18.
Angew Chem Int Ed Engl ; 55(41): 12722-6, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27625187

ABSTRACT

The ansa-aminohydroborane 1-NMe2 -2-(BH2 )C6 H4 crystallizes in an unprecedented type of dimer containing a B-H bond activated by one FLP moiety. Upon mild heating and without the use of any catalyst, this molecule liberates one equivalent of hydrogen to generate a diborane molecule. The synthesis and structural characterization of these new compounds, as well as the kinetic monitoring of the reaction and the DFT investigation of its mechanism, are reported.

19.
Chem Commun (Camb) ; 52(31): 5387-90, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27005399

ABSTRACT

While the organotrifluoroborate group is commonly used as a leaving group in cross-coupling reactions, we now show that their high stability can be used to protect the Lewis acidic moieties of frustrated Lewis pair catalysts. Indeed, the air and moisture-stable trifluoro- and difluoroborate derivatives of bulky (tetramethylpiperidino)benzene are shown to be conveniently converted to their dihydroborane analogue which is known to activate small molecules. An efficient synthesis route to these stable and convenient precatalysts, their deprotection chemistry and their benchtop use for the dehydrogenative borylation of heteroarenes is presented.

20.
Dalton Trans ; 45(5): 2130-7, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26530277

ABSTRACT

The di-tert-butylphosphido-boratabenzene ligand (DTBB) reacts with [(C2H4)2RhCl]2 yielding the dimeric species [(C2H4)Rh(DTBB)]2 (1). This species was fully characterized by multinuclear NMR and X-ray crystallography. Complex 1 readily dissociates ethylene in solution and upon exposure to 1 atm of H2 is capable of carrying out the hydrogenation of ethylene. The characterization of two Rh-H species by multinuclear NMR spectroscopy is provided. The reactivity of 1 towards the catalytic hydrogenation of alkenes and alkynes at room temperature and 1 atm of H2 is reported and compared to the activity of Wilkinson's catalyst under the same reaction conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...