Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 119(6): 402-410, 2017 12.
Article in English | MEDLINE | ID: mdl-28930289

ABSTRACT

Historical fluctuations in forests' distribution driven by past climate changes and anthropogenic activities can have large impacts on the demographic history of pathogens that have a long co-evolution history with these host trees. Using a population genetic approach, we investigated that hypothesis by reconstructing the demographic history of Armillaria ostoyae, one of the major pathogens of the maritime pine (Pinus pinaster), in the largest monospecific pine planted forest in Europe (south-western France). Genetic structure analyses and approximate Bayesian computation approaches revealed that a single pathogen population underwent a severe reduction in effective size (12 times lower) 1080-2080 generations ago, followed by an expansion (4 times higher) during the last 4 generations. These results are consistent with the history of the maritime pine forest in the region characterized by a strong recession during the last glaciation (~19 000 years ago) and massive plantations during the second half of the nineteenth century. Results suggest that recent and intensive plantations of a host tree population have offered the opportunity for a rapid spread and adaptation of their pathogens.


Subject(s)
Armillaria/genetics , Genetics, Population , Pinus/microbiology , Plant Diseases/microbiology , Armillaria/pathogenicity , Bayes Theorem , Forests , France , Gene Pool , Genotyping Techniques , Microsatellite Repeats , Models, Genetic , Polymorphism, Single Nucleotide , Population Density , Trees/microbiology
2.
Adv Mar Biol ; 75: 333-358, 2016.
Article in English | MEDLINE | ID: mdl-27770989

ABSTRACT

The harbour porpoise, Phocoena phocoena, is one of the best studied cetacean species owing to its common distribution along the coastal waters of the Northern Hemisphere. In European waters, strandings are common and bycatch mortalities in commercial fisheries reach alarming numbers. Lethal interactions resulting from human activities together with ongoing environmental changes raise serious concerns about population viability throughout the species' range. These concerns foster the need to fill critical gaps in knowledge of harbour porpoise biology, including population structure, feeding ecology, habitat preference and evolutionary history, that are critical information for planning effective management and conservation efforts. While the species is distributed fairly continuously in the North Atlantic Ocean, it becomes fragmented in the south-eastern part with isolated populations occurring along the Atlantic coasts of the Iberian Peninsula, Northwest Africa and the Black Sea. The latter population is separated from Atlantic populations by the Mediterranean Sea, where the species is almost entirely absent. Understanding the evolutionary history of these populations occurring in marginal habitats holds the potential to reveal fundamental aspects of the species' biology such as the factors determining its distribution, ecological niche, and how past and recent environmental variation have shaped the current population structure. This information can be critical for understanding the future evolution of the species in consideration of ongoing environmental changes. This chapter summarizes the recent advances in our knowledge regarding the populations bordering the Mediterranean Sea with a special emphasis on their ecological and evolutionary history, which has recently been reconstructed from genetic analyses.


Subject(s)
Biological Evolution , Phocoena/physiology , Animal Distribution , Animals , Atlantic Ocean , Mediterranean Sea , Phocoena/genetics , Phylogeography
3.
J Fish Dis ; 39(1): 13-29, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25399660

ABSTRACT

Streptococcus agalactiae infections in fish are predominantly caused by beta-haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non-haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10(2) cfu per fish, whereas ST23 does not cause disease at 10(7) cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR-based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish-derived strains. Several fish-associated genes encode proteins that potentially provide fitness in the aquatic environment.


Subject(s)
Cichlids , Fish Diseases/microbiology , Genome, Bacterial , Streptococcal Infections/veterinary , Streptococcus agalactiae/pathogenicity , Animals , Cattle , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , Genetic Loci/genetics , Humans , Phylogeny , Seals, Earless/microbiology , Serial Passage/veterinary , Streptococcal Infections/microbiology , Streptococcus agalactiae/classification , Streptococcus agalactiae/genetics , Virulence
4.
J Dairy Sci ; 96(8): 5129-45, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23769372

ABSTRACT

Streptococcus uberis is an important cause of intramammary infection in dairy cattle. Strains of Strep. uberis appear to differ in their ability to cause disease based on previous epidemiological studies. We explored the pathogenicity of 2 strains of Strep. uberis, where one strain represented a putatively host-adapted type based on its ability to cause persistent infection and to spread from cow to cow in a lactating herd. This type was part of a clonal complex that is commonly associated with bovine mastitis. The other strain, which was isolated from a transient infection in a single animal in the same herd and did not belong to any known clonal complex, was selected as putatively nonadapted type. Cows (6 per strain) were experimentally challenged in a single hind quarter and the adjacent hind quarter was used as mock challenged control quarter. Both strains showed an equal ability to grow in the milk of challenge animals in vitro. All cows that were challenged with the putatively host-adapted strain developed clinical signs of mastitis, including fever and milk yield depression as well as elevated somatic cell count due to influx of polymorphonuclear leucocytes and lymphocytes. The cytokine response followed a specific order, with an increase in IL-1ß, IL-6, and IL-8 levels at the time of first SCC elevation, followed by an increase in IL-10, IL-12p40, and tumor necrosis factor-α levels approximately 6h later. In 4 of 6 animals, IL-17A was detected in milk between 57 and 168 h postchallenge. The increase in IL-17A levels coincided with inversion of the prechallenge CD4(+)-to-CD8(+) T lymphocyte ratio, which was observed from 96 h postchallenge. This was followed by normalization of the CD4(+)-to-CD8(+) ratio due to continued increase of the CD8(+) concentration up to 312 h postchallenge. Spontaneous resolution of infection was observed in 5 animals and coincided with a measurable IL-17A response in 4 animals, suggesting that IL-17 may be involved in the resolution of intramammary infection. With the exception of minor elevation of IL-8 levels, no clinical, cytological, or immunological response was detected in quarters challenged with the nonadapted strain. The observed strain-specific pathogenicity was consistent across animals, implying that it is determined by pathogen factors rather than host factors.


Subject(s)
Mastitis, Bovine/microbiology , Streptococcal Infections/veterinary , Streptococcus/pathogenicity , Animals , Cattle , Cell Count/veterinary , Electrophoresis, Gel, Pulsed-Field/veterinary , Female , Interleukin-17/blood , Interleukin-1beta/blood , Interleukin-6/blood , Interleukin-8/blood , Lymphocyte Count/veterinary , Mastitis, Bovine/immunology , Milk/cytology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus/immunology
5.
Mol Ecol ; 22(2): 327-40, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23205613

ABSTRACT

Unravelling the mechanisms involved in adaptation to understand plant morphological evolution is a challenging goal. For crop species, identification of molecular causal polymorphisms involved in domestication traits is central to this issue. Pearl millet, a domesticated grass mostly found in semi-arid areas of Africa and India, is an interesting model to address this topic: the domesticated form shares common derived phenotypes with some other cereals such as a decreased ability to develop basal and axillary branches in comparison with the wild phenotype. Two recent studies have shown that the orthologue of the maize gene Teosinte-Branched1 in pearl millet (PgTb1) was probably involved in branching evolution during domestication and that a miniature inverted-repeat transposable element (MITE) of the Tuareg family was inserted in the 3' untranslated region of PgTb1. For a set of 35 wild and domesticated populations, we compared the polymorphism patterns at this MITE and at microsatellite loci. The Tuareg insertion was nearly absent in the wild populations, whereas a strong longitudinal frequency cline was observed in the domesticated populations. The geographical pattern revealed by neutral microsatellite loci clearly demonstrated that isolation by distance does not account for the existence of this cline. However, comparison of population differentiation at the microsatellite and the MITE loci and analyses of the nucleotide polymorphism pattern in the downstream region of PgTb1 did not show evidence that the cline at the MITE locus has been shaped by selection, suggesting the implication of a neutral process. Alternative hypotheses are discussed.


Subject(s)
DNA Transposable Elements , Inverted Repeat Sequences , Pennisetum/genetics , Polymorphism, Genetic , Africa , Crops, Agricultural/genetics , DNA, Plant/genetics , Evolution, Molecular , Genes, Plant , Microsatellite Repeats , Selection, Genetic , Sequence Analysis, DNA
6.
J Dairy Sci ; 96(2): 962-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23200465

ABSTRACT

Streptococcus uberis causes clinical and subclinical mastitis in cattle and sheep, but it is unknown whether the composition of Strep. uberis populations differs between host species. To address this, we characterized a collection of bovine and ovine Strep. uberis isolates with shared geographical and temporal origins by means of an expanded multilocus sequence typing scheme. Among 14 ovine and 35 bovine isolates, 35 allelic profiles were detected. Each allelic profile was associated with a single host species and all but one were new to the multilocus sequence typing database. The median number of new alleles per isolate was higher for ovine isolates than for bovine isolates. None of the ovine isolates belonged to the global clonal complexes 5 or 143, which are commonly associated with bovine mastitis and which have a wide geographical distribution. Ovine isolates also differed from bovine isolates in carriage of plasminogen activator genes, with significantly higher prevalence of pauB in ovine isolates. Isolates that were negative for yqiL, one of the targets of multilocus sequence typing, were found among ovine and bovine isolates and were not associated with a specific sequence type or global clonal complex. One bovine isolate carried a gapC allele that was probably acquired through lateral gene transfer, most likely from Streptococcus salivarius. We conclude that ovine isolates are distinct from bovine isolates of Strep. uberis, and that recombination between isolates from different host species or bacterial species could contribute to changes in virulence gene profiles with relevance for vaccine development.


Subject(s)
Streptococcus/genetics , Animals , Cattle/microbiology , DNA, Bacterial/genetics , Female , Mastitis/microbiology , Mastitis/veterinary , Mastitis, Bovine/microbiology , Multilocus Sequence Typing/veterinary , Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA/veterinary , Sheep/microbiology , Sheep Diseases/microbiology , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus/isolation & purification
7.
Mol Ecol ; 21(3): 715-31, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21988698

ABSTRACT

Behaviour and genetic structure are intimately related: mating patterns and patterns of movement between groups or populations influence the movement of genetic variation across the landscape and from one generation to the next. In hybrid zones, the behaviour of the hybridizing taxa can also impact the incidence and outcome of hybridization events. Hybridization between yellow baboons and anubis baboons has been well documented in the Amboseli basin of Kenya, where more anubis-like individuals tend to experience maturational and reproductive advantages. However, it is unknown whether these advantages are reflected in the genetic structure of populations surrounding this area. Here, we used microsatellite genotype data to evaluate the structure and composition of baboon populations in southern Kenya. Our results indicate that, unlike for mitochondrial DNA, microsatellite-based measures of genetic structure concord with phenotypically based taxonomic distinctions and that the currently active hybrid zone is relatively narrow. Isolation with migration analysis revealed asymmetric gene flow in this region from anubis populations into yellow populations, in support of the anubis-biased phenotypic advantages observed in Amboseli. Populations that are primarily yellow but that receive anubis gene flow exhibit higher levels of genetic diversity than yellow populations far from the introgression front. Our results support previous work that indicates a long history of hybridization and introgression among East African baboons. Specifically, it suggests that anubis baboons are in the process of gradual range expansion into the range of yellow baboons, a pattern potentially explained by behavioural and life history advantages that correlate with anubis ancestry.


Subject(s)
Hybridization, Genetic , Population/genetics , Reproductive Isolation , Animals , Biological Evolution , DNA, Mitochondrial/genetics , Gene Flow , Genetic Speciation , Genotype , Microsatellite Repeats/genetics , Papio , Sexual Behavior, Animal
8.
Vet Immunol Immunopathol ; 144(3-4): 270-89, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21955443

ABSTRACT

Many different bacterial species have the ability to cause an infection of the bovine mammary gland and the host response to these infections is what we recognize as mastitis. In this review we evaluate the pathogen specific response to the three main bacterial species causing bovine mastitis: Escherichia coli, Streptococcus uberis and Staphylococcus aureus. In this paper we will review the bacterial growth patterns, host immune response and clinical response that results from the intramammary infections. Clear differences in bacterial growth pattern are shown between bacterial species. The dominant pattern in E. coli infections is a short duration high bacteria count infection, in S. aureus this is more commonly a persistent infection with relative low bacteria counts and in S. uberis a long duration high bacteria count infection is often observed. The host immune response differs significantly depending on the invading bacterial species. The underlying reasons for the differences and the resulting host response are described. Finally we discuss the clinical response pattern for each of the three bacterial species. The largest contrast is between E. coli and S. aureus where a larger proportion of E. coli infections cause potentially severe clinical symptoms, whereas the majority of S. aureus infections go clinically unnoticed. The relevance of fully understanding the bovine host response to intramammary infection is discussed, some major gaps in our knowledge are highlighted and directions for future research are indicated.


Subject(s)
Mastitis, Bovine/immunology , Adaptive Immunity/immunology , Animals , Cattle , Cytokines/immunology , Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Female , Immunity, Cellular/immunology , Immunity, Innate/immunology , Lactation/immunology , Mammary Glands, Animal/immunology , Mammary Glands, Animal/microbiology , Mastitis, Bovine/microbiology , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus/immunology , Toll-Like Receptors/immunology
9.
Mol Ecol ; 19(2): 292-306, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20041992

ABSTRACT

Numerous genes in diverse organisms have been shown to be under positive selection, especially genes involved in reproduction, adaptation to contrasting environments, hybrid inviability, and host-pathogen interactions. Looking for genes under positive selection in pathogens has been a priority in efforts to investigate coevolution dynamics and to develop vaccines or drugs. To elucidate the functions involved in host specialization, here we aimed at identifying candidate sequences that could have evolved under positive selection among closely related pathogens specialized on different hosts. For this goal, we sequenced c. 17,000-32,000 ESTs from each of four Microbotryum species, which are fungal pathogens responsible for anther smut disease on host plants in the Caryophyllaceae. Forty-two of the 372 predicted orthologous genes showed significant signal of positive selection, which represents a good number of candidate genes for further investigation. Sequencing 16 of these genes in 9 additional Microbotryum species confirmed that they have indeed been rapidly evolving in the pathogen species specialized on different hosts. The genes showing significant signals of positive selection were putatively involved in nutrient uptake from the host, secondary metabolite synthesis and secretion, respiration under stressful conditions and stress response, hyphal growth and differentiation, and regulation of expression by other genes. Many of these genes had transmembrane domains and may therefore also be involved in pathogen recognition by the host. Our approach thus revealed fruitful and should be feasible for many non-model organisms for which candidate genes for diversifying selection are needed.


Subject(s)
Basidiomycota/genetics , Host-Pathogen Interactions/genetics , Selection, Genetic , Caryophyllaceae/microbiology , Cluster Analysis , DNA, Fungal/genetics , Expressed Sequence Tags , Gene Library , Genes, Fungal , Plant Diseases/microbiology , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
10.
J Comp Pathol ; 137(4): 179-210, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17826790

ABSTRACT

Caseous lymphadenitis (CLA) of sheep, caused by Corynebacterium pseudotuberculosis, has been a significant disease in the majority of sheep-rearing regions for over a century. Because of the chronic and often sub-clinical nature of the infection, it has proved difficult to control and prevalence is high in many parts of the world, which in turn leads to significant economic losses for farmers. This review describes the important characteristics of C. pseudotuberculosis and examines the pathogenesis and epidemiology of the infection in sheep. The review also discusses the immune response to infection and describes the methods that have been developed to control CLA, with particular emphasis on the use of vaccination and serological testing.


Subject(s)
Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis , Lymphadenitis/microbiology , Lymphadenitis/veterinary , Sheep Diseases/microbiology , Animals , Corynebacterium Infections/epidemiology , Corynebacterium Infections/metabolism , Humans , Lymphadenitis/epidemiology , Lymphadenitis/metabolism , Occupational Diseases/microbiology , Occupational Diseases/prevention & control , Prevalence , Serologic Tests , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/metabolism , United Kingdom , Vaccination , Zoonoses/etiology , Zoonoses/microbiology
12.
Infect Immun ; 68(5): 2441-8, 2000 May.
Article in English | MEDLINE | ID: mdl-10768929

ABSTRACT

An isogenic mutant of Streptococcus pyogenes Manfredo that lacks the ability to make streptococcal acid glycoprotein (SAGP) has been constructed by inserting a deletion in the sagp gene using the method of allelic exchange. An assay of cell extracts (CE) prepared from the wild-type and mutant Manfredo strains for the enzyme arginine deiminase (AD) showed that significant activity was present in wild-type CE but none could be detected in mutant CE. These findings confirm our earlier conclusion that SAGP has AD activity (B. A. Degnan, J. M. Palmer, T. Robson, C. E. D. Jones, M. Fischer, M. Glanville, G. D. Mellor, A. G. Diamond, M. A. Kehoe, and J. A. Goodacre, Infect. Immun. 66:3050-3058, 1998). Wild-type CE but not mutant CE potently inhibited human peripheral blood mononuclear cell proliferation in response to phytohemagglutinin, and this inhibition was overcome by the addition of L-arginine to proliferation assay mixtures. Invasion assays showed that the isogenic mutant organisms lacking SAGP, and thus AD activity, were between three and five times less able to enter epithelial cells (Hep-2C and A549) than were the wild-type streptococci. Both wild-type and mutant S. pyogenes bacteria were extremely sensitive to low pH. However, L-arginine (1 mM or above) significantly increased the viability of the wild type but not the isogenic mutant organisms under acidic conditions. The difference in acid susceptibility between wild-type and mutant bacteria may explain the reduced capacity of the isogenic mutant bacteria to invade and survive intracellularly.


Subject(s)
Bacterial Proteins/physiology , Streptococcus pyogenes/pathogenicity , Arginine , Bacterial Proteins/genetics , Cell Division , Citrulline , Epithelial Cells/microbiology , Glycoproteins/genetics , Glycoproteins/physiology , Humans , Hydrogen-Ion Concentration , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Mitogens/pharmacology , Mutagenesis , Phytohemagglutinins/pharmacology , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...