Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 6989-6999, 2024 09.
Article in English | MEDLINE | ID: mdl-38625552

ABSTRACT

Epilepsy is a condition marked by sudden, self-sustained, and recurring brain events, showcasing unique electro-clinical and neuropathological phenomena that can alter the structure and functioning of the brain, resulting in diverse manifestations. Antiepileptic drugs (AEDs) can be very effective in 30% of patients in controlling seizures. Several factors contribute to this: drug resistance, individual variability, side effects, complexity of epilepsy, incomplete understanding, comorbidities, drug interactions, and no adherence to treatment. Therefore, research into new AEDs is important for several reasons such as improved efficacy, reduced side effects, expanded treatment options, treatment for drug-resistant epilepsy, improved safety profiles, targeted therapies, and innovation and progress. Animal models serve as crucial biological tools for comprehending neuronal damage and aiding in the discovery of more effective new AEDs. The utilization of antioxidant agents that act on the central nervous system may serve as a supplementary approach in the secondary prevention of epilepsy, both in laboratory animals and potentially in humans. Chlorogenic acid (CGA) is a significant compound, widely prevalent in numerous medicinal and food plants, exhibiting an extensive spectrum of biological activities such as neuroprotection, antioxidant, anti-inflammatory, and analgesic effects, among others. In this research, we assessed the neuroprotective effects of commercially available CGA in Wistar rats submitted to lithium-pilocarpine-induced status epilepticus (SE) model. After 72-h induction of SE, rats received thiopental and were treated for three consecutive days (1st, 2nd, and 3rd doses). Next, brains were collected and studied histologically for viable cells in the hippocampus with staining for cresyl-violet (Nissl staining) and for degenerating cells with Fluoro-Jade C (FJC) staining. Moreover, to evaluate oxidative stress, the presence of malondialdehyde (MDA) and superoxide dismutase (SOD) was quantified. Rats administered with CGA (30 mg/kg) demonstrated a significant decrease of 59% in the number of hippocampal cell loss in the CA3, and of 48% in the hilus layers after SE. A significant reduction of 75% in the cell loss in the CA3, shown by FJC+ staining, was also observed with the administration of CGA (30 mg/kg). Furthermore, significant decreases of 49% in MDA production and 72% in the activity of SOD were seen, when compared to animals subjected to SE that received vehicle. This study introduces a novel finding: the administration of CGA at a dosage of 30 mg/kg effectively reduced oxidative stress induced by lithium-pilocarpine, with its effects lasting until the peak of neural damage 72 h following the onset of SE. Overall, the research and development of new AEDs are essential for advancing epilepsy treatment, improving patient outcomes, and ultimately enhancing the quality of life for individuals living with epilepsy.


Subject(s)
Chlorogenic Acid , Neuroprotective Agents , Oxidative Stress , Pilocarpine , Rats, Wistar , Status Epilepticus , Animals , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Pilocarpine/toxicity , Oxidative Stress/drug effects , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Rats , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Disease Models, Animal , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Lithium/pharmacology
2.
Article in English | MEDLINE | ID: mdl-31131008

ABSTRACT

BACKGROUND: L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults. METHODS: Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions. RESULTS: In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival) indicate that RT10 reduced the toxic effects of L-Glu, as shown by a 38 % increase in MAP2 fluorescence when compared to L-Glu insult. On the other hand, the riluzole treatment resulted in 17% increase of MAP2 fluorescence; therefore, the neuroprotection from RT10 was more efficacious. CONCLUSION: RT10 fraction exhibits neuroprotective effects against L-Glu excitotoxicity in neuron-glia cultured in vitro.

3.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e148818, May 16, 2019. ilus, graf
Article in English | VETINDEX | ID: vti-19838

ABSTRACT

Background: L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults. Methods: Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions. Results: In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival)...(AU)


Subject(s)
Animals , Rats , Rats, Wistar , Neuroglia/chemistry , Glutamates/analysis , Glutamates/toxicity , Spider Venoms/therapeutic use , Neuroprotective Agents/administration & dosage , Neurotoxins/analysis
4.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;25: e148818, 2019. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1002502

ABSTRACT

L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults. Methods: Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions. Results: In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival) indicate that RT10 reduced the toxic effects of L-Glu, as shown by a 38 % increase in MAP2 fluorescence when compared to L-Glu insult. On the other hand, the riluzole treatment resulted in 17% increase of MAP2 fluorescence; therefore, the neuroprotection from RT10 was more efficacious. Conclusion: RT10 fraction exhibits neuroprotective effects against L-Glu excitotoxicity in neuron-glia cultured in vitro.(AU)


Subject(s)
Spider Venoms , Neuroprotection , Neurotransmitter Agents , Excitatory Amino Acid Agonists , Evaluation Studies as Topic
5.
Br J Pharmacol ; 139(7): 1297-309, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12890709

ABSTRACT

(1) In this study, we examined the effects of crude venom from the spider Parawixia bistriata on glutamate and GABA uptake into synaptosomes prepared from rat cerebral cortex. Addition of venom to cortical synaptosomes stimulated glutamate uptake and inhibited GABA uptake in a concentration-dependent manner. (2) The venom was fractionated using reverse-phase high-performance liquid chromatography on a preparative column. The fraction that retained glutamate uptake-stimulating activity was further purified on a reverse-phase analytical column followed by ion-exchange chromatography. (3) The active fraction, referred to as PbTx1.2.3, stimulated glutamate uptake in synaptosomes without changing the K(M) value, and did not affect GABA uptake. Additional experiments showed that the enhancement of glutamate uptake by PbTx1.2.3 occurs when ionotropic glutamate receptors or voltage-gated sodium and calcium channels are completely inhibited or when GABA receptors and potassium channels are activated, indicating that the compound may have a direct action on the transporters. (4) In an experimental model for glaucoma in which rat retinas are subjected to ischemia followed by reperfusion, PbTx1.2.3 protected neurons from excitotoxic death in both outer and inner nuclear layers, and ganglion cell layers. (5) This active spider venom component may serve as a basis for designing therapeutic drugs that increase glutamate clearance and limit neurodegeneration.


Subject(s)
Glutamic Acid/pharmacokinetics , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Spider Venoms/isolation & purification , Tissue Extracts/pharmacology , Animals , Brazil , Carbon Isotopes , Cerebral Cortex/cytology , Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange , Disease Models, Animal , Dose-Response Relationship, Drug , Glaucoma/drug therapy , Glaucoma/physiopathology , Glutamic Acid/drug effects , Glutamic Acid/metabolism , Ion Channels/drug effects , Ion Channels/metabolism , Ion Channels/physiopathology , Male , Neuroprotective Agents/chemistry , Rats , Rats, Wistar , Receptors, Metabotropic Glutamate/drug effects , Receptors, Metabotropic Glutamate/physiology , Retina/drug effects , Retina/pathology , Retina/ultrastructure , Spider Venoms/chemistry , Spider Venoms/pharmacology , Spiders , Synaptosomes/drug effects , Synaptosomes/metabolism , Tritium , gamma-Aminobutyric Acid/drug effects , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL