Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 134(4): 287-300, 2021 12.
Article in English | MEDLINE | ID: mdl-34799272

ABSTRACT

Glutaric aciduria type I (GA-I, OMIM # 231670) is an autosomal recessive inborn error of metabolism caused by deficiency of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH). The principal clinical manifestation in GA-I patients is striatal injury most often triggered by catabolic stress. Early diagnosis by newborn screening programs improved survival and reduced striatal damage in GA-I patients. However, the clinical phenotype is still evolving in the aging patient population. Evaluation of long-term outcome in GA-I patients recently identified glomerular filtration rate (GFR) decline with increasing age. We recently created the first knock-in rat model for GA-I harboring the mutation p.R411W (c.1231 C>T), corresponding to the most frequent GCDH human mutation p.R402W. In this study, we evaluated the effect of an acute metabolic stress in form of high lysine diet (HLD) on young Gcdhki/ki rats. We further studied the chronic effect of GCDH deficiency on kidney function in a longitudinal study on a cohort of Gcdhki/ki rats by repetitive 68Ga-EDTA positron emission tomography (PET) renography, biochemical and histological analyses. In young Gcdhki/ki rats exposed to HLD, we observed a GFR decline and biochemical signs of a tubulopathy. Histological analyses revealed lipophilic vacuoles, thinning of apical brush border membranes and increased numbers of mitochondria in proximal tubular (PT) cells. HLD also altered OXPHOS activities and proteome in kidneys of Gcdhki/ki rats. In the longitudinal cohort, we showed a progressive GFR decline in Gcdhki/ki rats starting at young adult age and a decline of renal clearance. Histopathological analyses in aged Gcdhki/ki rats revealed tubular dilatation, protein accumulation in PT cells and mononuclear infiltrations. These observations confirm that GA-I leads to acute and chronic renal damage. This raises questions on indication for follow-up on kidney function in GA-I patients and possible therapeutic interventions to avoid renal damage.


Subject(s)
Glomerular Filtration Rate , Glutarates/urine , Glutaryl-CoA Dehydrogenase/deficiency , Kidney/pathology , Metabolism, Inborn Errors/physiopathology , Animals , Computational Biology , Disease Models, Animal , Female , Gene Knock-In Techniques , Humans , Infant, Newborn , Kidney/metabolism , Male , Metabolism, Inborn Errors/pathology , Neonatal Screening , Oxidative Phosphorylation , Protein Interaction Maps , Rats , Vacuoles/pathology
2.
Immunity ; 42(4): 767-77, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25888260

ABSTRACT

Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses.


Subject(s)
Complement C3a/immunology , Complement C5a/immunology , Gene Expression Regulation, Neoplastic/immunology , Immunity, Innate/radiation effects , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Animals , Antineoplastic Agents, Hormonal/pharmacology , Complement Activation , Complement C3a/genetics , Complement C5a/genetics , Dexamethasone/pharmacology , Gamma Rays , Humans , Immunity, Innate/drug effects , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/radiotherapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Complement/genetics , Receptors, Complement/immunology , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/radiotherapy , Tumor Burden/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...