Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Crit Care Med ; 199(2): 171-180, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30212240

ABSTRACT

RATIONALE: Airways obstruction with thick, adherent mucus is a pathophysiologic and clinical feature of muco-obstructive respiratory diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis (CF). Mucins, the dominant biopolymer in mucus, organize into complex polymeric networks via the formation of covalent disulfide bonds, which govern the viscoelastic properties of the mucus gel. For decades, inhaled N-acetylcysteine (NAC) has been used as a mucolytic to reduce mucin disulfide bonds with little, if any, therapeutic effects. Improvement of mucolytic therapy requires the identification of NAC deficiencies and the development of compounds that overcome them. OBJECTIVES: Elucidate the pharmacological limitations of NAC and test a novel mucin-reducing agent, P3001, in preclinical settings. METHODS: The study used biochemical (e.g., Western blotting, mass spectrometry) and biophysical assays (e.g., microrheology/macrorheology, spinnability, mucus velocity measurements) to test compound efficacy and toxicity in in vitro and in vivo models and patient sputa. MEASUREMENTS AND MAIN RESULTS: Dithiothreitol and P3001 were directly compared with NAC in vitro and both exhibited superior reducing activities. In vivo, P3001 significantly decreased lung mucus burden in ßENaC-overexpressing mice, whereas NAC did not (n = 6-24 mice per group). In NAC-treated CF subjects (n = 5), aerosolized NAC was rapidly cleared from the lungs and did not alter sputum biophysical properties. In contrast, P3001 acted faster and at lower concentrations than did NAC, and it was more effective than DNase in CF sputum ex vivo. CONCLUSIONS: These results suggest that reducing the viscoelasticity of airway mucus is an achievable therapeutic goal with P3001 class mucolytic agents.


Subject(s)
Asthma/drug therapy , Cystic Fibrosis/drug therapy , Expectorants/therapeutic use , Mucociliary Clearance/drug effects , Mucus/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Acetylcysteine/therapeutic use , Animals , Asthma/physiopathology , Cystic Fibrosis/physiopathology , Disease Models, Animal , Dithiothreitol/therapeutic use , Humans , In Vitro Techniques , Male , Mice , Pulmonary Disease, Chronic Obstructive/physiopathology
2.
Eur Respir J ; 52(6)2018 12.
Article in English | MEDLINE | ID: mdl-30361244

ABSTRACT

Cystic fibrosis (CF) is a recessive genetic disease that is characterised by airway mucus plugging and reduced mucus clearance. There are currently alternative hypotheses that attempt to describe the abnormally viscous and elastic mucus that is a hallmark of CF airways disease, including: 1) loss of CF transmembrane regulator (CFTR)-dependent airway surface volume (water) secretion, producing mucus hyperconcentration-dependent increased viscosity, and 2) impaired bicarbonate secretion by CFTR, producing acidification of airway surfaces and increased mucus viscosity.A series of experiments was conducted to determine the contributions of mucus concentration versus pH to the rheological properties of airway mucus across length scales from the nanoscopic to macroscopic.For length scales greater than the nanoscopic, i.e. those relevant to mucociliary clearance, the effect of mucus concentration dominated over the effect of airway acidification.Mucus hydration and chemical reduction of disulfide bonds that connect mucin monomers are more promising therapeutic approaches than alkalisation.


Subject(s)
Cystic Fibrosis/metabolism , Mucociliary Clearance , Mucus/metabolism , Adolescent , Adult , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Humans , Hydrogen-Ion Concentration , Immunohistochemistry , Male , Microscopy, Fluorescence , Middle Aged , Respiratory System/physiopathology , Rheology , Sputum/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...