Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(8)2021 02.
Article in English | MEDLINE | ID: mdl-33608269

ABSTRACT

Migration of gonadotropin-releasing hormone (GnRH) neurons from their birthplace in the nasal placode to their hypothalamic destination is critical for vertebrate reproduction and species persistence. While their migration mode as individual GnRH neurons has been extensively studied, the role of GnRH-GnRH cell communication during migration remains largely unexplored. Here, we show in awake zebrafish larvae that migrating GnRH neurons pause at the nasal-forebrain junction and form clusters that act as interhemisphere neuronal ensembles. Within the ensembles, GnRH neurons create an isolated, spontaneously active circuit that is internally wired through monosynaptic glutamatergic synapses into which newborn GnRH neurons integrate before entering the brain. This initial phase of integration drives a phenotypic switch, which is essential for GnRH neurons to properly migrate toward their hypothalamic destination. Together, these experiments reveal a critical step for reproduction, which depends on synaptic communication between migrating GnRH neurons.

2.
J Neuroendocrinol ; 28(2): 12352, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26686489

ABSTRACT

Although growth hormone (GH)- and prolactin (PRL)-secreting pituitary adenomas are considered benign, in many patients, tumour growth and/or invasion constitute a particular challenge. In other tumours, progression relies in part on dysfunction of intercellular adhesion mediated by the large family of cadherins. In the present study, we have explored the contribution of cadherins in GH and PRL adenoma pathogenesis, and evaluated whether this class of adherence molecules was related to tumour invasiveness. We have first established, by quantitative polymerase chain reaction and immunohistochemistry, the expression profile of classical cadherins in the normal human pituitary gland. We show that the cadherin repertoire is restricted and cell-type specific. Somatotrophs and lactotrophs express mainly E-cadherin and cadherin 18, whereas N-cadherin is present in the other endocrine cell types. This repertoire undergoes major differential modification in GH and PRL tumours: E-cadherin is significantly reduced in invasive GH adenomas, and this loss is associated with a cytoplasmic relocalisation of cadherin 18 and catenins. In invasive prolactinomas, E-cadherin distribution is altered and is accompanied by a mislocalisation of cadherin 18, ß-catenin and p120 catenin. Strikingly, de novo expression of N-cadherin is present in a subset of adenomas and cells exhibit a mesenchymal phenotype exclusively in invasive tumours. Binary tree analysis, performed by combining the cadherin repertoire with the expression of a subset of known molecular markers, shows that cadherin/catenin complexes play a significant role in discrimination of tumour invasion.


Subject(s)
Cadherins/metabolism , Galectin 3/biosynthesis , Growth Hormone-Secreting Pituitary Adenoma/pathology , Pituitary Neoplasms/pathology , Prolactinoma/pathology , RNA-Binding Proteins/biosynthesis , Securin/biosynthesis , Adolescent , Adult , Aged , Biomarkers/metabolism , Blood Proteins , Cadherins/biosynthesis , Child , Child, Preschool , Female , Galectins , Growth Hormone-Secreting Pituitary Adenoma/metabolism , Humans , Male , Middle Aged , Neoplasm Invasiveness , Pituitary Gland/metabolism , Pituitary Neoplasms/metabolism , Prolactinoma/metabolism , Young Adult
3.
Front Neuroendocrinol ; 33(3): 252-66, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22981652

ABSTRACT

Both endocrine and non-endocrine cells of the pituitary gland are organized into structural and functional networks which are formed during embryonic development but which may be modified throughout life. Structural mapping of the various endocrine cell types has highlighted the existence of distinct network motifs and relationships with the vasculature which may relate to temporal differences in their output. Functional characterization of the network activity of growth hormone and prolactin cells has revealed a role for cell organization in gene regulation, the plasticity of pituitary hormone output and remarkably the ability to memorize altered demand. As such, the description of these endocrine cell networks alters the concept of the pituitary from a gland which simply responds to external regulation to that of an oscillator which may memorize information and constantly adapt its coordinated networks' responses to the flow of hypothalamic inputs.


Subject(s)
Pituitary Gland, Anterior/cytology , Animals , Cell Communication/physiology , Cell Differentiation , Corticotrophs/physiology , Endocrine Cells/physiology , Female , Gonadotrophs/physiology , Growth Hormone/metabolism , Male , Mice , Models, Biological , Pituitary Gland, Anterior/blood supply , Pituitary Gland, Anterior/embryology , Somatotrophs/physiology , Stem Cells/physiology
4.
J Neuroendocrinol ; 22(12): 1217-25, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20673299

ABSTRACT

Endocrine cells in the mammalian pituitary are arranged into three-dimensional homotypic networks that wire the gland and act to optimise hormone output by allowing the transmission of information between cell ensembles in a temporally precise manner. Despite this, the structure-function relationships that allow cells belonging to these networks to display coordinated activity remain relatively uncharacterised. This review discusses the recent technological advances that have allowed endocrine cell network structure and function to be probed and the mathematical models that can be used to analyse and present the resulting data. In particular, we focus on the mechanisms that allow endocrine cells to dynamically function as a population to drive hormone release as well as the experimental and theoretical methods that are used to track and model information flow through the network.


Subject(s)
Models, Theoretical , Pituitary Gland/physiology , Animals , Humans , Neurons/physiology , Pituitary Gland/cytology
5.
Neuroscience ; 125(2): 391-410, 2004.
Article in English | MEDLINE | ID: mdl-15062982

ABSTRACT

Hypothalamic oxytocin neurones have dual physiological functions with associated characteristic activity patterns: a homeostatic osmoregulatory role involving continuous low frequency firing at a relatively constant rate, and roles associated with reproduction involving periodic, brief, synchronised, high frequency bursts of spikes. Apparently the same neurones maintain both roles during reproduction, when both activity patterns occur simultaneously, although sometimes factors linked to the homeostatic response predominate and prevent bursting. With the object of understanding how oxytocin neuronal networks manage both roles during lactation, we analysed basal activity between bursts in simultaneously recorded neurones to reveal potentially adaptive changes in network behaviour. Negative autocorrelation on a time scale of 0.5-2 s occurs in basal activity between bursts but also in non-bursting oxytocin neurones, and can therefore be associated with the system's homeostatic role. Although the system responds to the pups suckling by the induction of bursting, there are also increasing fluctuations in firing that are positively correlated in some simultaneously recorded neurones during basal activity between bursts. A few seconds before bursts, cross-correlation strengthens, irregularity of firing increases, and serial correlation (autocorrelation) weakens, all substantially. After pharmacological treatments known to facilitate bursting, cross-correlation and irregularity of firing increase and autocorrelation weakens, and the reverse occurs in conditions that delay bursting (hyperosmotic stress and pharmacological interventions). Our analyses suggest heterogeneity in the population of oxytocin neurones during lactation; the range including 'leader neurones' that readily display co-ordinated fluctuations in firing in response to suckling and escape from negative autocorrelation just before bursts, and 'follower neurones' that fire at a relatively constant rate in no apparent relationship to others, except when recruited late to bursting, probably in response to massive stimulation from already bursting neurones. The steep increases in correlation a few seconds before bursts reflect an accelerating process of recruitment of follower neurones to co-ordinated fluctuations, leading to the phase transition that constitutes the critical stage of burst generation.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Supraoptic Nucleus/cytology , Acetylcholine/pharmacology , Action Potentials/drug effects , Animals , Animals, Suckling , Cholecystokinin/pharmacology , Drug Administration Routes , Electrophysiology/methods , Mathematics , Neurons/classification , Neurons/drug effects , Nonlinear Dynamics , Oxytocin/pharmacology , Rats , Rats, Wistar , Sodium/pharmacology , Statistics as Topic , Time Factors
6.
Cardiovasc Res ; 48(3): 375-92, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11090833

ABSTRACT

OBJECTIVE: The L-type Ca(2+) current (I(Ca,L)) contributes to the generation and modulation of the pacemaker action potential (AP). We investigated facilitation of I(Ca,L) in sino-atrial cells. METHODS: Facilitation was studied in regularly-beating cells isolated enzymatically from young albino rabbits (0.8-1 kg). We used the whole-cell patch-clamp technique to vary the frequency of the test depolarizations evoked at -10 mV or the conditioning diastolic membrane potential prior to the test pulse. RESULTS: High frequencies (range 0.2-3.5 Hz) slowed the decay kinetics of I(Ca,L) evoked from a holding potential (HP) of -80 mV in 68% of cells resulting in a larger Ca(2+) influx during the test pulse. The amount of facilitation increased progressively between 0.2 and 3.0 Hz. When the frequency was changed from 0.1 to 1 Hz, the averaged increase in the time integral of I(Ca,L) was 27+/-7% (n=22). Application of conditioning voltages between -80 and -50 mV induced similar facilitation of I(Ca,L) in 73% of cells. The maximal increase of Ca(2+) entry occurred between -60 and -50 mV, and was on average 38+/-14% for conditioning prepulses of 5 s in duration (n=15). Numerical simulations of the pacemaker activity showed that facilitation of I(Ca,L) promotes stability of sino-atrial rate by enhancing Ca(2+) entry, thus establishing a negative feedback control against excessive heart rate slowing. CONCLUSION: Facilitation of I(Ca,L) is present in rabbit sino-atrial cells. The underlying mechanism reflects modulation of I(Ca,L) decay kinetics by diastolic membrane potential and frequency of depolarization. This phenomenon may provide an important regulatory mechanism of sino-atrial automaticity.


Subject(s)
Calcium Channels, L-Type/metabolism , Computer Simulation , Models, Cardiovascular , Myocardial Contraction/physiology , Sinoatrial Node/metabolism , Animals , Calcium/metabolism , Electric Stimulation , Extracellular Space/metabolism , Feedback , Membrane Potentials/physiology , Patch-Clamp Techniques , Rabbits
7.
J Neuroendocrinol ; 12(6): 506-20, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10844579

ABSTRACT

Magnocellular oxytocin neurones are proposed as a suitable system for studying the mechanisms involved in the regulation of neuronal bursting activity. They display high frequency (50 sp./s) bursts of spikes (approximately every 300 s), in response to specific stimuli, which are superimposed on a variable level of basal activity and are tightly co-ordinated as a result of network interactions. The relationship between the strength of the bursting activity (as quantified by burst amplitude and interburst interval) and the characteristics of the interburst basal activity were assessed. During control conditions, mean basal activity and variability of firing increased just before bursts. During experimental conditions leading to burst facilitation, burst amplitude increased and interburst interval decreased while a sustained increase in mean firing rate occurred. Variability of firing (measured by both the standard deviation of firing rate, and the index of dispersion which corrected this standard deviation for differences in mean firing rate), increased demonstrating an increase in spike clustering greater than expected as a result of increased basal activity. When bursting was restrained (i.e. interburst interval increased), mean basal activity increased substantially, but index of dispersion decreased. A narrowing of the interspike interval distribution occurred, indicating increased regularity of firing. The aspect of basal activity most strongly correlated with bursting was variability of firing rate. The strongest correlate of burst amplitude was the standard deviation of mean firing rate, whereas the strongest and most consistent correlate of interburst interval was the index of dispersion. In conclusion, bursting behaviour is most strongly related to the irregularity rather than the level of basal activity.


Subject(s)
Hypothalamus/physiology , Neurons/physiology , Oxytocin/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Electrophysiology , Female , Hypothalamus/cytology , Hypothalamus/drug effects , Neurons/drug effects , Oxytocin/pharmacology , Rats , Rats, Wistar , Reaction Time/drug effects , Reference Values , Saline Solution, Hypertonic/pharmacology
8.
J Clin Endocrinol Metab ; 82(2): 690-6, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9024278

ABSTRACT

Endogenous production of SRIH and GHRH was analyzed in human breast tissue. SRIH precursor (pro-SRIH) was identified after Sephadex G-50 filtration of acetic acid extracts of normal and tumoral human breast samples. SRIH-(1-14) or -(1-28) could not be detected in breast tissue, whereas the immunoreactive SRIH released in vitro was characterized as SRIH-(1-28). Endogenous production of GHRH was assessed by identification of GHRH messenger ribonucleic acid by PCR followed by sequencing of the amplified complementary DNA and by high performance liquid chromatographic characterization of immunoreactive GHRH contained in the tissue and released in vitro. There were no differences in pro-SRIH or GHRH-(1-44) tissue contents between normal and tumoral samples. The release of both peptides was evidenced in perifusion and static incubation. Perifusion of normal breast tissue (n = 3) showed pulsatile release of SRIH and GHRH. Perifusion of tumors (n = 4) showed SRIH release in 50% of the cases. SRIH release was pulsatile in one case. GHRH release was observed in the four tumoral samples analyzed, but was pulsatile in only one case. In static incubation, tumors (n = 6) secreted 13 times more GHRH than did normal samples (n = 3; 383 +/- 92 vs. 29.6 +/- 4.6 fmol/mg protein; P < 0.05). Stimulation of GHRH release by exogenous SRIH was observed only with the normal tissue. Together these data provide evidence for the existence of local production of SRIH and GHRH by human breast. Hypersecretion of GHRH by breast tumors indicates that this peptide could play a role in maintaining epithelial cell proliferation as is the case for other peptides produced locally.


Subject(s)
Breast Neoplasms/metabolism , Breast/metabolism , Growth Hormone-Releasing Hormone/metabolism , Somatostatin/metabolism , Chromatography, High Pressure Liquid , Female , Fourier Analysis , Growth Hormone-Releasing Hormone/genetics , Humans , Polymerase Chain Reaction , Pulsatile Flow , RNA, Messenger/metabolism , Radioimmunoassay , Reference Values , Transcription, Genetic
9.
J Neurophysiol ; 77(1): 260-71, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9120568

ABSTRACT

Action potentials and voltage-gated currents were studied in acutely dissociated neurosecretory cells from the rat supraoptic nucleus during the first three postnatal weeks (PW1-PW3), a period corresponding to the final establishment of neuroendocrine relationships. Action potential duration (at half maximum) decreased from 2.7 to 1.8 ms; this was attributable to a decrease in decay time. Application of cadmium (250 microM) reduced the decay time by 43% at PW1 and 21% at PW3, indicating that the contribution of calcium currents to action potentials decreased during postnatal development. The density of high-voltage-activated calcium currents increased from 4.4 to 10.1 pA/pF at postnatal days 1-5 and 11-14, respectively. The conductance density of sustained potassium current, measured at +20 mV, increased from 0.35 (PW1) to 0.53 (PW3) nS/pF. The time to half-maximal amplitude did not change. Conductance density and time- and voltage-dependent inactivation of the transient potassium current were stable from birth. At PW1, the density and time constant of decay (measured at 0 mV) were 0.29 nS/pF (n = 12) and 17.9 ms (n = 10), respectively. Voltage-dependent properties and density (1.1 nS/pF) of the sodium current did not change postnatally. During PW1, fitting the mean activation data with a Boltzmann function gave a half-activation potential of -25 mV. A double Boltzman equation was necessary to adequately fit the inactivation data, suggesting the presence of two populations of sodium channels. One population accounted for approximately 14% of the channels, with a half-inactivation potential of -86 mV; the remaining population showed a half-inactivation potential of -51 mV. A mathematical model, based on Hodgkin-Huxley equations, was used to assess the respective contributions of individual currents to the action potential. When the densities of calcium and sustained potassium currents were changed from immature to mature values, the decay time of the action potentials generated with the model decreased from 2.85 to 1.95 ms. A similar reduction was obtained when only the density of the potassium current was increased. Integration of the calcium currents generated during mature and immature action potentials demonstrated a significant decrease in calcium entry during development. We conclude that the developmental reduction of the action potential duration 1) is a consequence of the developmentally regulated increase in a sustained potassium current and 2) leads to a reduction of the participation of calcium currents in the action potential, resulting in a decreased amount of calcium entering the cell during each action potential.


Subject(s)
Calcium Channels/physiology , Hypothalamo-Hypophyseal System/growth & development , Neurons/physiology , Action Potentials/physiology , Animals , Axons/physiology , Computer Simulation , Electrophysiology , Female , Hypothalamo-Hypophyseal System/cytology , Ion Channel Gating/physiology , Kinetics , Male , Membrane Potentials/physiology , Models, Neurological , Patch-Clamp Techniques , Potassium Channels/physiology , Rats , Sodium Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...