Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Intensive Care Med Exp ; 12(1): 36, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607459

ABSTRACT

BACKGROUND: In refractory out-of-hospital cardiac arrest, the patient is commonly transported to hospital with mechanical continuous chest compressions (CCC). Limited data are available on the optimal ventilation strategy. Accordingly, we compared arterial oxygenation and haemodynamics during manual asynchronous continuous ventilation and compressions with a 30:2 compression-to-ventilation ratio together with the use of 10 cmH2O positive end-expiratory pressure (PEEP). METHODS: Intubated and anaesthetized landrace pigs with electrically induced ventricular fibrillation were left untreated for 5 min (n = 31, weight ca. 55 kg), after which they were randomized to either the CCC group or the 30:2 group with the the LUCAS® 2 piston device and bag-valve ventilation with 100% oxygen targeting a tidal volume of 8 ml/kg with a PEEP of 10 cmH2O for 35 min. Arterial blood samples were analysed every 5 min, vital signs, near-infrared spectroscopy and electrical impedance tomography (EIT) were measured continuously, and post-mortem CT scans of the lungs were obtained. RESULTS: The arterial blood values (median + interquartile range) at the 30-min time point were as follows: PaO2: 180 (86-302) mmHg for the 30:2 group; 70 (49-358) mmHg for the CCC group; PaCO2: 41 (29-53) mmHg for the 30:2 group; 44 (21-67) mmHg for the CCC group; and lactate: 12.8 (10.4-15.5) mmol/l for the 30:2 group; 14.7 (11.8-16.1) mmol/l for the CCC group. The differences were not statistically significant. In linear mixed models, there were no significant differences between the groups. The mean arterial pressures from the femoral artery, end-tidal CO2, distributions of ventilation from EIT and mean aeration of lung tissue in post-mortem CTs were similar between the groups. Eight pneumothoraces occurred in the CCC group and 2 in the 30:2 group, a statistically significant difference (p = 0.04). CONCLUSIONS: The 30:2 and CCC protocols with a PEEP of 10 cmH2O resulted in similar gas exchange and vital sign outcomes in an experimental model of prolonged cardiac arrest with mechanical compressions, but the CCC protocol resulted in more post-mortem pneumothoraces.

2.
Intensive Care Med Exp ; 11(1): 3, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36607514

ABSTRACT

BACKGROUND: In refractory out-of-hospital cardiac arrest, transportation to hospital with continuous chest compressions (CCC) from a chest compression device and ventilation with 100% oxygen through an advanced airway is common practice. Despite this, many patients are hypoxic and hypercapnic on arrival, possibly related to suboptimal ventilation due to the counterpressure caused by the CCC. We hypothesized that a compression/ventilation ratio of 30:2 would provide better ventilation and gas exchange compared to asynchronous CCC during prolonged experimental cardiopulmonary resuscitation (CPR). METHODS: We randomized 30 anaesthetized domestic swine (weight approximately 50 kg) with electrically induced ventricular fibrillation to the CCC or 30:2 group and bag-valve ventilation with a fraction of inspired oxygen (FiO2) of 100%. We started CPR after a 5-min no-flow period and continued until 40 min from the induction of ventricular fibrillation. Chest compressions were performed with a Stryker Medical LUCAS® 2 mechanical chest compression device. We collected arterial blood gas samples every 5 min during the CPR, measured ventilation distribution during the CPR using electrical impedance tomography (EIT) and analysed post-mortem computed tomography (CT) scans for differences in lung aeration status. RESULTS: The median (interquartile range [IQR]) partial pressure of oxygen (PaO2) at 30 min was 110 (52-117) mmHg for the 30:2 group and 70 (40-171) mmHg for the CCC group. The median (IQR) partial pressure of carbon dioxide (PaCO2) at 30 min was 70 (45-85) mmHg for the 30:2 group and 68 (42-84) mmHg for the CCC group. No statistically significant differences between the groups in PaO2 (p = 0.40), PaCO2 (p = 0.79), lactate (p = 0.37), mean arterial pressure (MAP) (p = 0.47) or EtCO2 (p = 0.19) analysed with a linear mixed model were found. We found a deteriorating trend in PaO2, EtCO2 and MAP and rising PaCO2 and lactate levels through the intervention. There were no differences between the groups in the distribution of ventilation in the EIT data or the post-mortem CT findings. CONCLUSIONS: The 30:2 and CCC protocols resulted in similar gas exchange and lung pathology in an experimental prolonged mechanical CPR model.

3.
Minerva Anestesiol ; 88(7-8): 594-603, 2022.
Article in English | MEDLINE | ID: mdl-35381836

ABSTRACT

During the COVID-19 pandemic, prehospital and hospital services were put under great stress because of limited resources and increased workloads. One expected effect was the increased number of out-of-hospital (OHCA) and in-hospital (IHCA) cardiac arrests that occurred during 2020 compared to previous years. Both direct and indirect mechanisms were involved. In the former case, although the exact mechanisms by which SARS-CoV-2 causes cardiac arrest (CA) are still unknown, severe hypoxia, a dysregulated immune host response and sepsis are probably implicated and are often seen in COVID-19 patients with poor outcomes. In the latter case, the strain on hospitals, changes in treatment protocols, governments' actions to limit the spread of the disease and fear of the contagion naturally affected treatment efficacy and disrupted the CA chain of survival; as expected in OHCA, only a small proportion of patients were positive to COVID-19, and yet reported outcomes were worse during the pandemic. CA patient characteristics were reported, along with modifications in patient management. In this review, we summarize the evidence to date regarding OHCA and IHCA epidemiology and management during the COVID-19 pandemic.


Subject(s)
COVID-19 , Cardiopulmonary Resuscitation , Emergency Medical Services , Out-of-Hospital Cardiac Arrest , Cardiopulmonary Resuscitation/methods , Demography , Emergency Medical Services/methods , Hospitals , Humans , Out-of-Hospital Cardiac Arrest/epidemiology , Out-of-Hospital Cardiac Arrest/therapy , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...