Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 12(8)2020 07 30.
Article in English | MEDLINE | ID: mdl-32751684

ABSTRACT

Mycotoxins are secondary metabolites produced by some filamentous fungi, which can cause toxicity in animal species, including humans. Because of their high toxicological impacts, mycotoxins have received significant consideration, leading to the definition of strict legislative thresholds and limits in many areas of the world. Mycotoxins can reduce farm profits not only through reduced crop quality and product refusal, but also through a reduction in animal productivity and health. This paper briefly addresses the impacts of mycotoxin contamination of feed and food on animal and human health, and describes the main pre- and post-harvest systems to control their levels, including genetic, agronomic, biological, chemical, and physical methods. It so highlights (i) the lack of effective and straightforward solutions to control mycotoxin contamination in the field, at pre-harvest, as well as later post-harvest; and (ii) the increasing demand for novel methods to control mycotoxin infections, intoxications, and diseases, without leaving toxic chemical residues in the food and feed chain. Thus, the broad objective of the present study was to review the literature on the use of ozone for mycotoxin decontamination, proposing this gaseous air pollutant as a powerful tool to detoxify mycotoxins from feed and food.


Subject(s)
Animal Feed/analysis , Decontamination/methods , Food Contamination/analysis , Mycotoxins/analysis , Oxidants/chemistry , Ozone/chemistry , Animals , Food Contamination/prevention & control , Humans , Mycotoxins/chemistry , Mycotoxins/toxicity
2.
PLoS One ; 14(2): e0211573, 2019.
Article in English | MEDLINE | ID: mdl-30730925

ABSTRACT

The termination of cover crops in conventional no-till systems is mostly conducted mechanically in combination with herbicides. Combining flaming and roller crimpers could be a viable solution to avoid using herbicides for cover crop termination in farming systems where herbicides are banned, or at least to reduce their use in an integrated management approach. This research tested the effects of flaming used in combination with three different types of roller crimpers to terminate a fall-sown cover crop mixture of winter pea and barley. The cover crop termination rate was visually assessed in terms of percentage of green cover provided by cover crop plants at different intervals from the termination date, and estimated using a log-logistic non-linear regression model with four parameters. Machine performance data are also reported. The results show that, irrespective of the roller type, flaming significantly boosted the effect of the roller crimpers. In fact, an economic threshold for cover crop suppression of 85% was reached only when the rollers were used in combination with flaming. Nevertheless, none of the methods were able to reach the 100% of cover crop suppression. In some case, the combined use of flaming and roller crimpers allowed reaching the 90% of cover crop devitalisation, which happened six weeks after the termination date. More importantly, the use of flaming in combination with rollers shortened the time needed to achieve the estimated levels of devitalisation, compared with the rollers used alone. We conclude that flaming is an effective tool to increase the effectiveness of roller crimpers. Nevertheless, further research is needed to identify solutions to overcome the barrier of the high operational costs of flaming, which is constraining its wider adoption by farmers. Future studies could focus, for instance, on the development of a new prototype of combined machine for crimping and flaming the cover crops simultaneously, which could potentially reduce the operational costs.


Subject(s)
Agriculture/instrumentation , Crops, Agricultural/growth & development , Agriculture/economics , Costs and Cost Analysis , Environmental Monitoring , Rain , Seasons , Temperature
3.
PLoS One ; 11(6): e0158268, 2016.
Article in English | MEDLINE | ID: mdl-27341674

ABSTRACT

Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha-1 were created on 3 different turfgrass species: Cynodon dactylon x transvaalensis (Cdxt) 'Patriot', Zoysia matrella (Zm) 'Zeon' and Paspalum vaginatum (Pv) 'Salam'. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option.


Subject(s)
Nitrogen , Nutritional Physiological Phenomena , Poaceae , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...