Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Math Biol ; 78(6): 1771-1820, 2019 05.
Article in English | MEDLINE | ID: mdl-30734076

ABSTRACT

In this work we are interested in a mathematical model of the collective behavior of a fully connected network of finitely many neurons, when their number and when time go to infinity. We assume that every neuron follows a stochastic version of the Hodgkin-Huxley model, and that pairs of neurons interact through both electrical and chemical synapses, the global connectivity being of mean field type. When the leak conductance is strictly positive, we prove that if the initial voltages are uniformly bounded and the electrical interaction between neurons is strong enough, then, uniformly in the number of neurons, the whole system synchronizes exponentially fast as time goes to infinity, up to some error controlled by (and vanishing with) the channels noise level. Moreover, we prove that if the random initial condition is exchangeable, on every bounded time interval the propagation of chaos property for this system holds (regardless of the interaction intensities). Combining these results, we deduce that the nonlinear McKean-Vlasov equation describing an infinite network of such neurons concentrates, as time goes to infinity, around the dynamics of a single Hodgkin-Huxley neuron with chemical neurotransmitter channels. Our results are illustrated and complemented with numerical simulations.


Subject(s)
Action Potentials/physiology , Ion Channels/metabolism , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Computer Simulation , Nerve Net/cytology , Stochastic Processes
2.
J Math Biol ; 70(4): 829-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24710661

ABSTRACT

We introduce a stochastic individual model for the spatial behavior of an animal population of dispersive and competitive species, considering various kinds of biological effects, such as heterogeneity of environmental conditions, mutual attractive or repulsive interactions between individuals or competition between them for resources. As a consequence of the study of the large population limit, global existence of a nonnegative weak solution to a multidimensional parabolic strongly coupled model of competing species is proved. The main new feature of the corresponding integro-differential equation is the nonlocal nonlinearity appearing in the diffusion terms, which may depend on the spatial densities of all population types. Moreover, the diffusion matrix is generally not strictly positive definite and the cross-diffusion effect allows for influences growing linearly with the subpopulations' sizes. We prove uniqueness of the finite measure-valued solution and give conditions under which the solution takes values in a functional space. We then make the competition kernels converge to a Dirac measure and obtain the existence of a solution to a locally competitive version of the previous equation. The techniques are essentially based on the underlying stochastic flow related to the dispersive part of the dynamics, and the use of suitable dual distances in the space of finite measures.


Subject(s)
Models, Biological , Animals , Ecosystem , Mathematical Concepts , Nonlinear Dynamics , Population Dynamics/statistics & numerical data , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...