Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 85(11): 11E803, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430368

ABSTRACT

The TJ-II stellarator, a magnetically confined plasma device, is equipped with a broad range of diagnostics for plasma characterization. These include 4 neutral particle analyzers (NPAs), consisting of two Acord-12's, to perform poloidal measurements, plus a compact NPA, and an Acord-24, these in tangential viewing positions. The Acord-12's were originally equipped with two rows of 6 channels each, one for hydrogen neutrals and the other for deuterium neutrals but were changed to a single row of 12 detectors for hydrogen, the principal working gas in TJ-II. With this upgrade the resultant improved energy resolution spectrum has allowed more reliable ion temperature estimates to be obtained. Here we present the upgrades undertaken and present results to demonstrate the improved performance of this diagnostic.

2.
Rev Sci Instrum ; 81(10): 10D705, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033898

ABSTRACT

Impurity ion temperature and velocity profiles are obtained across plasmas in the TJ-II stellarator by performing charge-exchange recombination spectroscopy with a diagnostic neutral beam injector. For this, a tridirectional (toroidal plus two poloidal opposing views) multichannel spectroscopic diagnostic, incorporating 12-way fiber arrays, a compact f/1.8 spectrograph, and a back-illuminated CCD, permits Doppler line shifts and widths (of the C VI line at 529.05 nm) to be determined with 1-2 cm spatial resolution. For good photon counting statistics under Li-coated wall conditions, 600 µm diameter fibers collect and transmit light to curved 100 µm wide input slits. When calibrated with a neon pencil lamp this entrance slit width results in a non-Gaussian instrumental function that, if not handled correctly, can result in systematically underestimated impurity temperatures. Here we develop and present correction factors for this effect for a range of conditions.

3.
Rev Sci Instrum ; 79(9): 093511, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19044417

ABSTRACT

A mobile luminescent probe has been developed to detect fast ion losses and suprathermal ions escaping from the plasma of the TJ-II stellarator device. The priorities for its design have been flexibility for probe positioning, ease of maintenance, and detector sensitivity. It employs a coherent fiber bundle to relay, to the outside of the vacuum chamber, ionoluminescence images produced by the ions that impinge, after entering the detector head through a pinhole aperture, onto a screen of luminescent material. Ionoluminescence light detection is accomplished by a charge-coupled device camera and by a photomultiplier, both of which are optically coupled to the in-vacuum fiber bundle head by means of a standard optical setup. A detailed description of the detector, and the first results obtained when operated close to the plasma edge, are reported.

4.
Rev Sci Instrum ; 79(10): 10F540, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044682

ABSTRACT

The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.

SELECTION OF CITATIONS
SEARCH DETAIL
...