Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 345: 140438, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852379

ABSTRACT

Mercury's extreme toxicity and persistence in the environment justifies a thorough evaluation of its dynamics in ecosystems. Aveiro Lagoon (Portugal) was for decades subject to mercury effluent discharges. A Nature-based Solution (NbS) involving Zostera noltei re-colonization is being tested as an active ecosystem restoration measure. To study the effect of Zostera noltei on the sediment contaminant biogeochemistry, seasonal (summer/winter) sediment, interstitial water and labile mercury vertical profiles were made in vegetated (Transplanted and Natural seagrass meadows) and non-vegetated sites (Bare-bottom area). While no significant differences (p > 0.05) were observed in the sedimentary phase, Zostera noltei presence reduced the reactive/labile mercury concentrations in the top sediment layers by up to 40% when compared to non-vegetated sediment, regardless of season. No differences were found between vegetated meadows, highlighting the fast recovery of the contaminant regulation ecosystem function provided by the plants after re-colonization and its potential for the rehabilitation of historically contaminated ecosystems.


Subject(s)
Mercury , Zosteraceae , Ecosystem , Mercury/analysis , Plants , Portugal , Geologic Sediments
2.
Chemosphere ; 337: 139374, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37394190

ABSTRACT

The present study aimed to evaluate the effectiveness of seagrass recolonization as a nature-based solution for the recovery of a coastal area historically contaminated by mercury (Laranjo Bay, Ria de Aveiro, Portugal). A mesocosm approach was employed to assess the resistance of Zostera noltei to transplantation into contaminated sediments collected in-situ (0.5-20 mg kg-1 Hg). At each sampling time (15, 30, 60, 120 and 210 days), the resistance of transplanted Z. noltei was evaluated through growth parameters (biomass and coverage area), photosynthetic performance and elemental composition. Although some significant differences (p ≤ 0.05) were observed between treatments, essentially associated with the elemental composition of plant tissues, the most relevant variations were associated with seasonality. Overall, plants were found to not be affected by sediment contamination, under the tested concentrations, suggesting that recolonization with Z. noltei can be an effective restoration strategy for historically contaminated coastal areas.


Subject(s)
Mercury , Water Pollutants, Chemical , Zosteraceae , Bioaccumulation , Mercury/analysis , Biomass , Plants , Geologic Sediments , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...