Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 192: 125-136, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30170113

ABSTRACT

Chloroplast APX isoforms display controversial roles as H2O2 scavengers and signaling players in response to abiotic stress and conclusive results are lacking. We tested the hypothesis that thylakoidal APX displays an important role for drought tolerance, especially by regulating abundance of essential protein species. For this, OsApx8 RNAi-silenced rice (apx8) and non-transformed plants (NT) were exposed to mild water deficit. The drought-sensitivity in apx8 plants was revealed by decreases in shoot growth, relative water content and photosynthesis, which was accompanied by increased membrane damage, all compared to NT plants. This higher sensitivity of apx8 plants to mild drought stress was also related to a lower accumulation of important protein species involved in several metabolic processes, especially photosynthesis, photorespiration and redox metabolism. Despite apx8 plants have displayed an effective induction of compensatory antioxidant mechanisms in well-watered conditions, it was not enough to maintain H2O2 homeostasis and avoid oxidative and physiological disturbances under mild drought conditions. Thus, thylakoidal APX is involved in several phenotypic modifications at proteomic profile level, possibly via a H2O2-induced signaling mechanism. Consequently, this APX isoform is crucial for rice plants effectively cope with a mild drought condition. BIOLOGICAL SIGNIFICANCE: This work provides for the first time an integrative study involving proteomic, physiological and biochemical analyses directed to elucidation of thylakoidal APX roles for drought tolerance in rice plants. Our data reveal that this enzyme is crucial for maintaining of growth and photosynthesis under mild water deficit conditions. This essential role is related to maintaining of H2O2 homeostasis and accumulation of essential proteins involved in several important metabolic pathways. Remarkably, for drought resistance was essential the accumulation of proteins involved with metabolism of photosynthesis, signaling, carbohydrates, protein synthesis/degradation and stress. These results can contribute to understand the role of chloroplast ascorbate peroxidases in drought tolerance, highlighting the physiological importance of key proteins in this process.


Subject(s)
Ascorbate Peroxidases/metabolism , Oryza/enzymology , Oxidative Stress , Plant Proteins/metabolism , Thylakoids/enzymology , Dehydration , Hydrogen Peroxide/metabolism , Photosynthesis
2.
J Plant Physiol ; 171(1): 23-30, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24094996

ABSTRACT

The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks.


Subject(s)
Jatropha/physiology , Nitrates/metabolism , Photosynthesis , Plant Transpiration , Ricinus/physiology , Alcohol Oxidoreductases/metabolism , Ammonia/metabolism , Catalase/metabolism , Cell Respiration , Chlorophyll/metabolism , Electron Transport , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Jatropha/drug effects , Jatropha/radiation effects , Light , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Plant Leaves/physiology , Plant Proteins/metabolism , Ricinus/drug effects , Ricinus/radiation effects , Salt Tolerance , Sodium Chloride/pharmacology , Stress, Physiological , Water/physiology
3.
Plant Cell Environ ; 34(10): 1705-22, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21631533

ABSTRACT

Current studies, particularly in Arabidopsis, have demonstrated that mutants deficient in cytosolic ascorbate peroxidases (APXs) are susceptible to the oxidative damage induced by abiotic stress. In contrast, we demonstrate here that rice mutants double silenced for cytosolic APXs (APx1/2s) up-regulated other peroxidases, making the mutants able to cope with abiotic stress, such as salt, heat, high light and methyl viologen, similar to non-transformed (NT) plants. The APx1/2s mutants exhibited an altered redox homeostasis, as indicated by increased levels of H2O2 and ascorbate and glutathione redox states. Both mutant and NT plants exhibited similar photosynthesis (CO2) assimilation and photochemical efficiency) under both normal and stress conditions. Overall, the antioxidative compensatory mechanism displayed by the mutants was associated with increased expression of OsGpx genes, which resulted in higher glutathione peroxidase (GPX) activity in the cytosolic and chloroplastic fractions. The transcript levels of OsCatA and OsCatB and the activities of catalase (CAT) and guaiacol peroxidase (GPOD; type III peroxidases) were also up-regulated. None of the six studied isoforms of OsApx were up-regulated under normal growth conditions. Therefore, the deficiency in cytosolic APXs was effectively compensated for by up-regulation of other peroxidases. We propose that signalling mechanisms triggered in rice mutants could be distinct from those proposed for Arabidopsis.


Subject(s)
Ascorbate Peroxidases/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Oryza/enzymology , Ascorbate Peroxidases/genetics , Carbon Dioxide/metabolism , Catalase/genetics , Chlorophyll/metabolism , Chloroplasts/metabolism , Cytosol/enzymology , Cytosol/metabolism , Gene Expression Regulation, Plant , Glutathione/analysis , Glutathione Peroxidase/genetics , Homeostasis , Hydrogen Peroxide/analysis , Lipid Peroxidation , Oryza/genetics , Oryza/physiology , Oxidation-Reduction , Oxidative Stress , Phenotype , Photosynthesis , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Sequence Deletion , Signal Transduction , Stress, Physiological , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...