Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Evolution ; 78(4): 624-634, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38241518

ABSTRACT

Much of evolutionary theory is predicated on assumptions about the relative importance of simple additive versus complex epistatic genetic architectures. Previous work suggests traits strongly associated with fitness will lack additive genetic variation, whereas traits less strongly associated with fitness are expected to exhibit more additive genetic variation. We use a quantitative genetics method, line cross analysis, to infer genetic architectures that contribute to trait divergence. By parsing over 1,600 datasets by trait type, clade, and cross divergence, we estimated the relative importance of epistasis across the tree of life. In our comparison between life-history traits and morphological traits, we found greater epistatic contributions to life-history traits. Our comparison between plants and animals showed that animals have more epistatic contribution to trait divergence than plants. In our comparison of within-species versus between-species crosses, we found that only animals exhibit a greater epistatic contribution to trait divergence as divergence increases. While many scientists have argued that epistasis is ultimately of little importance, our results show that epistasis underlies much of trait divergence and must be accounted for in theory and practical applications like domestication, conservation breeding design, and understanding complex diseases.


Subject(s)
Epistasis, Genetic , Life History Traits , Animals , Plant Breeding , Phenotype , Plants , Models, Genetic
3.
Sci Total Environ ; 575: 672-680, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27644857

ABSTRACT

The extraction of oil and natural gas from unconventional shale formations has prompted a series of investigations to examine the quality of the groundwater in the overlying aquifers. Here we present a reconnaissance analysis of groundwater quality in the Eagle Ford region of southern Texas. These data reveal two distinct sample populations that are differentiable by bromide/chloride ratios. Elevated levels of fluoride, nitrate, sulfate, various metal ions, and the detection of exotic volatile organic compounds highlight a high bromide group of samples, which is geographically clustered, while encompassing multiple hydrogeological strata. Samples with bromide/chloride ratios representative of connate water displayed elevated levels of total organic carbon, while revealing the detection of alcohols and chlorinated compounds. These findings suggest that groundwater quality in the Western Gulf Basin is, for the most part, controlled by a series of natural processes; however, there is also evidence of episodic contamination events potentially attributed to unconventional oil and gas development or other anthropogenic activities. Collectively, this characterization of natural groundwater constituents and exogenous compounds will guide targeted remediation efforts and provides insight for agricultural entities, industrial operators, and rural communities that rely on groundwater in southern Texas.

4.
Sci Total Environ ; 573: 382-388, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27572531

ABSTRACT

We present an analysis of ambient benzene, toluene, and xylene isomers in the Eagle Ford shale region of southern Texas. In situ air quality measurements using membrane inlet mobile mass spectrometry revealed ambient benzene and toluene concentrations as high as 1000 and 5000 parts-per-billion, respectively, originating from specific sub-processes on unconventional oil and gas well pad sites. The detection of highly variant contamination events attributable to natural gas flaring units, condensate tanks, compressor units, and hydrogen sulfide scavengers indicates that mechanical inefficiencies, and not necessarily the inherent nature of the extraction process as a whole, result in the release of these compounds into the environment. This awareness of ongoing contamination events contributes to an enhanced knowledge of ambient volatile organic compounds on a regional scale. While these reconnaissance measurements on their own do not fully characterize the fluctuations of ambient BTEX concentrations that likely exist in the atmosphere of the Eagle Ford Shale region, they do suggest that contamination events from unconventional oil and gas development can be monitored, controlled, and reduced.


Subject(s)
Air Pollutants/analysis , Benzene/analysis , Environmental Monitoring/methods , Oil and Gas Industry , Toluene/analysis , Xylenes/analysis , Air Pollution , Texas
5.
Sci Total Environ ; 562: 906-913, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27125684

ABSTRACT

The recent expansion of natural gas and oil extraction using unconventional oil and gas development (UD) practices such as horizontal drilling and hydraulic fracturing has raised questions about the potential for environmental impacts. Prior research has focused on evaluations of air and water quality in particular regions without explicitly considering temporal variation; thus, little is known about the potential effects of UD activity on the environment over longer periods of time. Here, we present an assessment of private well water quality in an area of increasing UD activity over a period of 13months. We analyzed samples from 42 private water wells located in three contiguous counties on the Eastern Shelf of the Permian Basin in Texas. This area has experienced a rise in UD activity in the last few years, and we analyzed samples in four separate time points to assess variation in groundwater quality over time as UD activities increased. We monitored general water quality parameters as well as several compounds used in UD activities. We found that some constituents remained stable over time, but others experienced significant variation over the period of study. Notable findings include significant changes in total organic carbon and pH along with ephemeral detections of ethanol, bromide, and dichloromethane after the initial sampling phase. These data provide insight into the potentially transient nature of compounds associated with groundwater contamination in areas experiencing UD activity.


Subject(s)
Extraction and Processing Industry , Groundwater/chemistry , Oil and Gas Fields , Water Pollutants, Chemical/analysis , Environmental Monitoring , Hydraulic Fracking , Natural Gas , Texas , Water Quality , Water Wells
6.
Sci Total Environ ; 545-546: 114-26, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26745299

ABSTRACT

Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers.

8.
Environ Sci Technol ; 49(13): 8254-62, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26079990

ABSTRACT

The exploration of unconventional shale energy reserves and the extensive use of hydraulic fracturing during well stimulation have raised concerns about the potential effects of unconventional oil and gas extraction (UOG) on the environment. Most accounts of groundwater contamination have focused primarily on the compositional analysis of dissolved gases to address whether UOG activities have had deleterious effects on overlying aquifers. Here, we present an analysis of 550 groundwater samples collected from private and public supply water wells drawing from aquifers overlying the Barnett shale formation of Texas. We detected multiple volatile organic carbon compounds throughout the region, including various alcohols, the BTEX family of compounds, and several chlorinated compounds. These data do not necessarily identify UOG activities as the source of contamination; however, they do provide a strong impetus for further monitoring and analysis of groundwater quality in this region as many of the compounds we detected are known to be associated with UOG techniques.


Subject(s)
Geologic Sediments/chemistry , Groundwater/chemistry , Water Quality , Anions/analysis , Bromides/analysis , Chlorides/analysis , Chromatography, Gas , Metals/analysis , Methylene Chloride/analysis , Oil and Gas Fields/chemistry , Texas , Water Pollutants, Chemical/analysis , Water Supply
10.
Environ Sci Technol ; 47(17): 10032-40, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23885945

ABSTRACT

Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.


Subject(s)
Drinking Water/analysis , Water Pollutants, Chemical/analysis , Water Quality , Water Wells/analysis , Chromatography, Gas , Extraction and Processing Industry , Mass Spectrometry , Oil and Gas Fields , Texas
11.
Mol Phylogenet Evol ; 59(1): 66-80, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21255664

ABSTRACT

Natural hybridization among recently diverged species has traditionally been viewed as a homogenizing force, but recent research has revealed a possible role for interspecific gene flow in facilitating species radiations. Natural hybridization can actually contribute to radiations by introducing novel genes or reshuffling existing genetic variation among diverging species. Species that have been affected by natural hybridization often demonstrate patterns of discordance between phylogenies generated using nuclear and mitochondrial markers. We used Amplified Fragment Length Polymorphism (AFLP) data in conjunction with mitochondrial DNA in order to examine patterns of gene flow and nuclear-mitochondrial discordance in the Anaxyrus americanus group, a recent radiation of North American toads. We found high levels of gene flow between putative species, particularly in species pairs sharing similar male advertisement calls that occur in close geographic proximity, suggesting that prezygotic reproductive isolating mechanisms and isolation by distance are the primary determinants of gene flow and genetic differentiation among these species. Additionally, phylogenies generated using AFLP and mitochondrial data were markedly discordant, likely due to recent and/or ongoing natural hybridization events between sympatric populations. Our results indicate that the putative species in the A. americanus group have experienced high levels of gene flow, and suggest that their North American radiation could have been facilitated by the introduction of beneficial genetic variation from admixture between divergent populations coming into secondary contact after glacial retreats.


Subject(s)
Anura/genetics , Genes, Mitochondrial , Amplified Fragment Length Polymorphism Analysis , Animals , Anura/classification , Bayes Theorem , Female , Gene Flow , Genetic Markers , Genetic Speciation , Genetic Variation , Hybridization, Genetic , Likelihood Functions , Male , NADH Dehydrogenase/genetics , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/genetics , RNA, Transfer, Leu/genetics , Sequence Analysis, DNA , Sexual Behavior, Animal , Vocalization, Animal
12.
PLoS One ; 3(12): e3900, 2008.
Article in English | MEDLINE | ID: mdl-19065271

ABSTRACT

Understanding the general features of speciation is an important goal in evolutionary biology, and despite significant progress, several unresolved questions remain. We analyzed an extensive comparative dataset consisting of more than 1900 crosses between 92 species of toads to infer patterns of reproductive isolation. This unique dataset provides an opportunity to examine the strength of reproductive isolation, the development and sex ratios of hybrid offspring, patterns of fertility and infertility, and polyploidization in hybrids all in the context of genetic divergence between parental species. We found that the strength of intrinsic postzygotic isolation increases with genetic divergence, but relatively high levels of divergence are necessary before reproductive isolation is complete in toads. Fertilization rates were not correlated to genetic divergence, but hatching success, the number of larvae produced, and the percentage of tadpoles reaching metamorphosis were all inversely related with genetic divergence. Hybrids between species with lower levels of divergence developed to metamorphosis, while hybrids with higher levels of divergence stopped developing in gastrula and larval stages. Sex ratios of hybrid offspring were biased towards males in 70% of crosses and biased towards females in 30% of crosses. Hybrid females from crosses between closely related species were completely fertile, while approximately half (53%) of hybrid males were sterile, with sterility predicted by genetic divergence. The degree of abnormal ploidy in hybrids was positively related to genetic divergence between parental species, but surprisingly, polyploidization had no effect on patterns of asymmetrical inviability. We discuss explanations for these patterns, including the role of Haldane's rule in toads and anurans in general, and suggest mechanisms generating patterns of reproductive isolation in anurans.


Subject(s)
Bufonidae/genetics , Bufonidae/physiology , Animals , Crosses, Genetic , Female , Hybridization, Genetic , Infertility , Male , Ploidies , Reproduction/genetics , Reproduction/physiology , Sex Ratio , Zygote/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...