Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Appl Clin Med Phys ; 23(10): e13768, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36082988

ABSTRACT

PURPOSE: To develop a methodology that can be used to measure the temporal latency of a respiratory gating system. METHODS: The gating system was composed of an automatic gating interface (Response) and an in-house respiratory motion monitoring system featuring an optically tracked surface marker. Two approaches were used to measure gating latencies. A modular approach involved measuring separately the latency of the gating system's complementary metal-oxide-semiconductor tracking camera, tracking software, and a gating latency of the LINAC. Additionally, an end-to-end approach was used to measure the total latency of the gating system. End-to-end latencies were measured using the displacement of a radiographic target moving at known velocities during the gating process. RESULTS: Summing together the latencies of each of the modular components investigated yielded a total beam-on latency of 1.55 s and a total beam-off latency of 0.49 s. End-to-end beam-on and beam-off latency was found to be 1.49 and 0.34 s, respectively. In each case, no statistically significant differences were found between the end-to-end latency of the gating system and the summation of the individually measured components. CONCLUSION: Two distinct approaches to quantify gating latencies were presented. Measuring the end-to-end latency of the gating system provided an independent means of validating the modular approach. It is expected that the beam-on latencies reported in this work could be reduced by altering the control system configuration of the LINAC. The modular approach can be used to decouple the individual latencies of the gating system, but future improvements in the temporal resolution of the service graphing feature are needed to reduce the uncertainty of LINAC-related gating latencies measured using this approach. Both approaches are generalizable and can be used together when designing a quality assurance program for a respiratory gating system.


Subject(s)
Particle Accelerators , Software , Humans , Motion , Oxides , Movement
2.
Adv Radiat Oncol ; 7(2): 100780, 2022.
Article in English | MEDLINE | ID: mdl-34825112

ABSTRACT

BACKGROUND: Strategies for managing respiratory motion, specifically motion-encompassing methods, in radiation therapy typically assume reproducible breathing. In reality, respiratory motion variations occur and ultimately cause tumor motion variations, which can result in differences between the planned and delivered dose distributions. Therefore, breathing guidance techniques have been investigated to improve respiratory reproducibility. To our knowledge, bilevel positive airway pressure (BIPAP) ventilation assistance has not been previously investigated as a technique for improving respiratory reproducibility and is the focus of this work. METHODS AND MATERIALS: Ten patients undergoing radiation therapy treatment for cancers affected by respiratory motion (eg, lung and esophagus) participated in sessions in which their breathing was recorded during their course of treatment; these sessions occurred either before or after radiation treatments. Both unassisted free-breathing (FB) and BIPAP ventilation-assisted respiratory volume data were collected from each patient using spirometry. Patients used 2 different BIPAP ventilators (fixed BIPAP and flexible BIPAP), each configured to deliver the same volume of air per breath (ie, tidal volume). The flexible BIPAP ventilator permitted patient triggering (ie, it permitted patients to initiate each breath), and the fixed BIPAP did not. Intrasession and intersession metrics quantifying tidal volume variations were calculated and compared between the specific breathing platforms (FB or BIPAP). In addition, patient tolerance of both BIPAP ventilators was qualitatively assessed through verbal feedback. RESULTS: Both BIPAP ventilators were tolerated by patients, although the fixed BIPAP was not as well tolerated as the flexible BIPAP. Both BIPAP ventilators showed significant reductions (P < .05) in intrasession tidal volume variation compared with FB. However, only the fixed BIPAP significantly reduced the intersession tidal volume variation compared with FB. CONCLUSIONS: Based on the established correlation between tidal volume and tumor motion, any reduction of the tidal volume variation could result in reduced tumor motion variation. Fixed BIPAP ventilation was found to be tolerated by patients and was shown to significantly reduce intrasession and intersession tidal volume variations compared with FB. Therefore, future investigation into the potential of fixed BIPAP ventilation is warranted to define the possible clinical benefits.

3.
J Appl Clin Med Phys ; 22(9): 73-81, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34272810

ABSTRACT

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.


Subject(s)
Radiation Oncology , Radiotherapy, Image-Guided , Health Physics , Humans , Societies , United States , X-Rays
4.
Phys Med ; 87: 136-143, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33775567

ABSTRACT

INTRODUCTION: Previous literature has shown general trade-offs between plan complexity and resulting quality assurance (QA) outcomes. However, existing solutions for controlling this trade-off do not guarantee corresponding improvements in deliverability. Therefore, this work explored the feasibility of an optimization framework for directly maximizing predicted QA outcomes of plans without compromising the dosimetric quality of plans designed with an established knowledge-based planning (KBP) technique. MATERIALS AND METHODS: A support vector machine (SVM) was developed - using a database of 500 previous VMAT plans - to predict gamma passing rates (GPRs; 3%/3mm percent dose-difference/distance-to-agreement with local normalization) based on selected complexity features. A heuristic, QA-based optimization (QAO) framework was devised by utilizing the SVM model to iteratively modify mechanical treatment features most commonly associated with suboptimal GPRs. Specifically, leaf gaps (LGs) <50 mm were widened by random amounts, which impacts all aperture-based complexity features. 13 prostate KBP-guided VMAT plans were optimized via QAO using user-specified maximum LG displacements before corresponding changes in predicted GPRs and dose were assessed. RESULTS: Predicted GPRs increased by an average of 1.14 ± 1.25% (p = 0.006) with QAO using a 3 mm maximum random LG displacement. There were small differences in dose, resulting in similarly small changes in tumor control probability (maximum increase = 0.05%) and normal tissue complication probabilities in the bladder, rectum, and femoral heads (maximum decrease = 0.2% in the rectum). CONCLUSION: This study explored the feasibility of QAO and warrants future investigations of further incorporating QA endpoints into plan optimization.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Machine Learning , Male , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
5.
J Appl Clin Med Phys ; 21(11): 58-69, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33104297

ABSTRACT

Interplay effects in highly modulated stereotactic body radiation therapy lung cases treated with volumetric modulated arc therapy. PURPOSE: To evaluate the influence of tumor motion on dose delivery in highly modulated stereotactic body radiotherapy (SBRT) of lung cancer using volumetric modulated arc therapy (VMAT). METHODS: 4D-CT imaging data of the quasar respiratory phantom were acquired, using a GE Lightspeed 16-slice CT scanner, while the phantom reproduced patient specific respiratory traces. Flattening filter-free (FFF) dual-arc VMAT treatment plans were created on the acquired images in Pinnacle3 treatment planning system. Each plan was generated with varying levels of complexity characterized by the modulation complexity score. Static and dynamic measurements were delivered to GafChromic EBT3 film inside the respiratory phantom using an Elekta Versa HD linear accelerator. The treatment prescription was 10 Gy per fraction for 5 fractions. Comparisons of the planned and delivered dose distribution were performed using Radiological Imaging Technology (RIT) software. RESULTS: For the motion amplitudes and periods studied, the interplay effect is insignificant to the GTV coverage. The mean dose deviations between the planned and delivered dose distribution never went below -2.00% and a minimum dose difference of -5.05% was observed for a single fraction. However for amplitude of 2 cm, the dose error could be as large as 20.00% near the edges of the PTV at increased levels of complexity. Additionally, the modulation complexity score showed an ability to provide information related to dose delivery. A correlation value (R) of 0.65 was observed between the complexity score and the gamma passing rate for GTV coverage. CONCLUSIONS: As expected, respiratory motion effects are most evident for large amplitude respirations, complex fields, and small field margins. However, under all tested conditions target coverage was maintained.


Subject(s)
Lung Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Four-Dimensional Computed Tomography , Humans , Lung/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
6.
J Appl Clin Med Phys ; 21(1): 69-77, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31816175

ABSTRACT

PURPOSE: Knowledge-based planning (KBP) techniques have been reported to improve plan quality, efficiency, and consistency in radiation therapy. However, plan complexity and deliverability have not been addressed previously for treatment plans guided by an established in-house KBP system. The purpose of this work was to assess dosimetric, mechanical, and delivery properties of plans designed with a common KBP method for prostate cases treated via volumetric modulated arc therapy (VMAT). METHODS: Thirty-one prostate patients previously treated with VMAT were replanned with an in-house KBP method based on the overlap volume histogram. VMAT plan complexities of the KBP plans and the reference clinical plans were quantified via monitor units, modulation complexity scores, the edge metric, and average leaf motion per degree of gantry rotation. Each set of plans was delivered to the same diode array and agreement between computed and measured dose distributions was evaluated using the gamma index. Varying percent dose-difference (1-3%) and distance-to-agreement (1 mm to 3 mm) thresholds were assessed for gamma analyses. RESULTS: Knowledge-based planning (KBP) plans achieved average reductions of 6.4 Gy (P < 0.001) and 8.2 Gy (P < 0.001) in mean bladder and rectum dose compared to reference plans, while maintaining clinically acceptable target dose. However, KBP plans were significantly more complex than reference plans in each evaluated metric (P < 0.001). KBP plans also showed significant reductions (P < 0.05) in gamma passing rates at each evaluated criterion compared to reference plans. CONCLUSIONS: While KBP plans had significantly reduced bladder and rectum dose, they were significantly more complex and had significantly worse quality assurance outcomes than reference plans. These results suggest caution should be taken when implementing an in-house KBP technique.


Subject(s)
Algorithms , Knowledge Bases , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Male , Organs at Risk/radiation effects , Radiotherapy Dosage
7.
Pract Radiat Oncol ; 8(6): 437-444, 2018.
Article in English | MEDLINE | ID: mdl-29730280

ABSTRACT

PURPOSE: This article investigates dose-volume prediction improvements in a common knowledge-based planning (KBP) method using a Pareto plan database compared with using a conventional, clinical plan database. METHODS AND MATERIALS: Two plan databases were created using retrospective, anonymized data of 124 volumetric modulated arc therapy (VMAT) prostate cancer patients. The clinical plan database (CPD) contained planning data from each patient's clinically treated VMAT plan, which were manually optimized by various planners. The multicriteria optimization database (MCOD) contained Pareto-optimal plan data from VMAT plans created using a standardized multicriteria optimization protocol. Overlap volume histograms, incorporating fractional organ at risk volumes only within the treatment fields, were computed for each patient and used to match new patient anatomy to similar database patients. For each database patient, CPD and MCOD KBP predictions were generated for D10, D30, D50, D65, and D80 of the bladder and rectum in a leave-one-out manner. Prediction achievability was evaluated through a replanning study on a subset of 31 randomly selected database patients using the best KBP predictions, regardless of plan database origin, as planning goals. RESULTS: MCOD predictions were significantly lower than CPD predictions for all 5 bladder dose-volumes and rectum D50 (P = .004) and D65 (P < .001), whereas CPD predictions for rectum D10 (P = .005) and D30 (P < .001) were significantly less than MCOD predictions. KBP predictions were statistically achievable in the replans for all predicted dose-volumes, excluding D10 of bladder (P = .03) and rectum (P = .04). Compared with clinical plans, replans showed significant average reductions in Dmean for bladder (7.8 Gy; P < .001) and rectum (9.4 Gy; P < .001), while maintaining statistically similar planning target volume, femoral head, and penile bulb dose. CONCLUSION: KBP dose-volume predictions derived from Pareto plans were more optimal overall than those resulting from manually optimized clinical plans, which significantly improved KBP-assisted plan quality. SUMMARY: This work investigates how the plan quality of knowledge databases affects the performance and achievability of dose-volume predictions from a common knowledge-based planning approach for prostate cancer. Bladder and rectum dose-volume predictions derived from a database of standardized Pareto-optimal plans were compared with those derived from clinical plans manually designed by various planners. Dose-volume predictions from the Pareto plan database were significantly lower overall than those from the clinical plan database, without compromising achievability.


Subject(s)
Algorithms , Databases, Factual , Knowledge Bases , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Adult , Aged , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology , Radiotherapy Dosage , Retrospective Studies
8.
Phys Med Biol ; 63(1): 015035, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29131812

ABSTRACT

The overlap volume histogram (OVH) is an anatomical metric commonly used to quantify the geometric relationship between an organ at risk (OAR) and target volume when predicting expected dose-volumes in knowledge-based planning (KBP). This work investigated the influence of additional variables contributing to variations in the assumed linear DVH-OVH correlation for the bladder and rectum in VMAT plans of prostate patients, with the goal of increasing prediction accuracy and achievability of knowledge-based planning methods. VMAT plans were retrospectively generated for 124 prostate patients using multi-criteria optimization. DVHs quantified patient dosimetric data while OVHs quantified patient anatomical information. The DVH-OVH correlations were calculated for fractional bladder and rectum volumes of 30, 50, 65, and 80%. Correlations between potential influencing factors and dose were quantified using the Pearson product-moment correlation coefficient (R). Factors analyzed included the derivative of the OVH, prescribed dose, PTV volume, bladder volume, rectum volume, and in-field OAR volume. Out of the selected factors, only the in-field bladder volume (mean R = 0.86) showed a strong correlation with bladder doses. Similarly, only the in-field rectal volume (mean R = 0.76) showed a strong correlation with rectal doses. Therefore, an OVH formalism accounting for in-field OAR volumes was developed to determine the extent to which it improved the DVH-OVH correlation. Including the in-field factor improved the DVH-OVH correlation, with the mean R values over the fractional volumes studied improving from -0.79 to -0.85 and -0.82 to -0.86 for the bladder and rectum, respectively. A re-planning study was performed on 31 randomly selected database patients to verify the increased accuracy of KBP dose predictions by accounting for bladder and rectum volume within treatment fields. The in-field OVH led to significantly more precise and fewer unachievable KBP predictions, especially for lower bladder and rectum dose-volumes.


Subject(s)
Organs at Risk/radiation effects , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Rectum/radiation effects , Urinary Bladder/radiation effects , Humans , Male , Radiometry/methods , Radiotherapy Dosage , Retrospective Studies
10.
Med Phys ; 42(2): 735-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25652487

ABSTRACT

PURPOSE: To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. METHODS: Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes-one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm(3) Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. RESULTS: For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSDeff) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σR(z)] was calculated. Taking the cutout size dependence of σR(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSDeff values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. CONCLUSIONS: The improved LBR method has been generalized to calculate the output factor of electron therapy at extended SSD. The percentage difference between the calculated and the measured output factors of irregularly shaped cutouts in a clinical useful SSD region was within 2%. Similar results were obtained for all available electron energies of both Varian 2100C and ELEKTA Synergy machines.


Subject(s)
Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Particle Accelerators , Radiotherapy Dosage
12.
J Appl Clin Med Phys ; 15(5): 4990, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25207582

ABSTRACT

The purpose of this study was to assess the accuracy and efficacy of an automated treatment plan verification, or "secondary check", tool (Mobius3D), which uses a reference dataset to perform an independent three-dimensional dose verification of the treatment planning system (TPS) dose calculation and assesses plan quality by comparing dose-volume histograms to reference benchmarks. The accuracy of the Mobius3D (M3D) system was evaluated by comparing dose calculations from IMRT and VMAT plans with measurements in phantom geometries and with TPS calculated dose distributions in prostate, lung, and head and neck patients (ten each). For the patient cases, instances of DVH limits exceeding reference values were also recorded. M3D showed agreement with measured point and planar doses that was comparable to the TPS in phantom geometries. No statistically significant differences (p < 0.05) were noted. M3D dose distributions from VMAT plans in patient cases were in good agreement with the TPS, with an average of 99.5% of dose points showing γ5%,3mm < 1. The M3D system also identified several plans that had exceeded dose-volume limits specified by RTOG protocols for those sites. The M3D system showed dosimetric accuracy comparable with the TPS, and identified several plans that exceeded dosimetric benchmarks. The M3D system possesses the potential to enhance the current treatment plan verification paradigm and improve safety in the clinical treatment planning and review process.


Subject(s)
Algorithms , Checklist/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Software , Humans , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity , Software Validation
13.
Pract Radiat Oncol ; 4(1): e67-73, 2014.
Article in English | MEDLINE | ID: mdl-24621434

ABSTRACT

PURPOSE: To assess the accuracy and precision of cone-beam computed tomography (CBCT)-guided intensity modulated radiation therapy (IMRT). METHODS AND MATERIALS: A 7-field intensity modulated radiation therapy plan was constructed for an anthropomorphic head phantom loaded with a custom cassette containing radiochromic film. The phantom was positioned on the treatment table at 9 locations: 1 "correct" position and 8 "misaligned" positions along 3 orthogonal axes. A commercial kilovoltage cone-beam computed tomography (kV-CBCT) system (VolumeView, Elekta AB, Stockholm, Sweden) was then used to align the phantom prior to plan delivery. The treatment plan was delivered using the radiation therapy delivery system (Infinity; Elekta AB) 3 times for each of the 9 positions, allowing film measurement of the delivered dose distribution in 3 orthogonal planes. Comparison of the planned and delivered dose profiles along the major axes provided an estimate of the accuracy and precision of CBCT-guided IMRT. RESULTS: On average, targeting accuracy was found to be within 1 mm in all 3 major anatomic planes. Over all 54 measured dose profiles, the means and standard errors of the displacement of the center of the field between the measured and calculated profiles for each of the right-left, anterior-posterior, and superior-inferior axes were +0.08 ± 0.07 mm, +0.60 ± 0.08 mm, and +0.78 ± 0.16 mm, respectively. Agreement between planned and measured 80% profiles was less than 0.4 mm on either side along the right-left axis. A systematic shift of the measured profile of slightly less than 1 mm in anterior and superior directions was noted along the anterior-posterior and superior-inferior axes, respectively. CONCLUSIONS: Submillimeter targeting accuracy can be achieved using a commercial kV-CBCT IGRT system.


Subject(s)
Cone-Beam Computed Tomography/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Brain/anatomy & histology , Cone-Beam Computed Tomography/standards , Dimensional Measurement Accuracy , Head/anatomy & histology , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards
14.
Radiat Oncol ; 9: 66, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24571913

ABSTRACT

PURPOSE: To examine the feasibility of volumetric modulated arc therapy (VMAT) for post mastectomy radiotherapy (PMRT). METHODS AND MATERIALS: Fifteen PMRT patients previously treated at our clinic with helical tomotherapy (HT) were identified for the study. Planning target volumes (PTV) included the chest wall and regional lymph nodes. A systematic approach to constructing VMAT that met the clinical goals was devised. VMAT plans were then constructed for each patient and compared with HT plans with which they had been treated. The resulting plans were compared on the basis of PTV coverage; dose homogeneity index (DHI) and conformity index (CI); dose to organs at risk (OAR); tumor control probability (TCP), normal tissue complication probability (NTCP) and secondary cancer complication probability (SCCP); and treatment delivery time. Differences were tested for significance using the paired Student's t-test. RESULTS: Both modalities produced clinically acceptable PMRT plans. VMAT plans showed better CI (p<0.01) and better OAR sparing at low doses than HT plans, particularly at doses less than 5 Gy. On the other hand, HT plans showed better DHI (p<0.01) and showed better OAR sparing at higher doses. Both modalities achieved nearly 100% tumor control probability and approximately 1% NTCP in the lungs and heart. VMAT showed lower SCCP than HT (p<0.01), though both plans showed higher SCCP values than conventional mixed beam (electron-photon) plans reported by our group previously. VMAT plans required 66.2% less time to deliver than HT. CONCLUSIONS: Both VMAT and HT provide acceptable treatment plans for PMRT. Both techniques are currently utilized at our institution.


Subject(s)
Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Mastectomy , Radiotherapy, Intensity-Modulated , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Feasibility Studies , Female , Humans , Middle Aged , Organs at Risk , Postoperative Period , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
17.
Nucl Technol ; 183(1): 101-106, 2013 Jul.
Article in English | MEDLINE | ID: mdl-25435594

ABSTRACT

Monte Carlo simulations are increasingly used to reconstruct dose distributions in radiotherapy research studies. Many studies have used the MCNPX Monte Carlo code with a mesh tally for dose reconstructions. However, when the number of voxels in the simulated patient anatomy is large, the computation time for a mesh tally can become prohibitively long. The purpose of this work was to test the feasibility of using lattice tally instead of mesh tally for whole-body dose reconstructions. We did this by comparing the dosimetric accuracy and computation time of lattice tallies with those of mesh tallies for craniospinal proton irradiation. The two tally methods generated nearly identical dosimetric results, within 1% in dose and within 1 mm distance-to-agreement for 99% of the voxels. For a typical craniospinal proton treatment field, simulation speed was 4 to 17 times faster using the lattice tally than using the mesh tally, depending on the numbers of proton histories and voxels. We conclude that the lattice tally is an acceptable substitute for the mesh tally in dose reconstruction, making it a suitable potential candidate for clinical treatment planning.

18.
Radiat Meas ; 58: 37-44, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-25147474

ABSTRACT

Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beam line. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range, spread-out Bragg peak width and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved.

19.
Med Phys ; 39(7): 4378-85, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22830770

ABSTRACT

PURPOSE: To perform a comprehensive and systematic comparison of fixed-beam IMRT and volumetric modulated arc therapy (VMAT) patient-specific QA measurements for a common set of geometries using typical measurement methods. METHODS: Fixed-beam IMRT and VMAT plans were constructed for structure set geometries provided by AAPM Task Group 119. The plans were repeatedly delivered across multiple measurement sessions, and the resulting dose distributions were measured with (1) radiochromic film and ionization chamber and (2) a commercial two-dimensional diode array. The resulting QA measurements from each delivery technique were then analyzed, compared, and tested for statistically significant differences. RESULTS: Although differences were noted between QA results for some plans, neither modality showed consistently better agreement of measured and planned doses: of the 22 comparisons, IMRT showed better QA results in 11 cases, and VMAT showed better QA results in 11 cases. No statistically significant differences (p < 0.05) between IMRT and VMAT QA results were found for point doses measured with an ionization chamber, planar doses measured with radiochromic film, or planar doses measured with a two-dimensional diode array. CONCLUSIONS: These results suggest that it is appropriate to apply patient-specific QA action levels derived from fixed-beam IMRT to VMAT.


Subject(s)
Film Dosimetry/standards , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Conformal/methods , Humans , Quality Assurance, Health Care , Radiography , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
20.
J Appl Clin Med Phys ; 13(2): 3606, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22402378

ABSTRACT

Volumetric-modulated arc therapy (VMAT) is an effective but complex technique for delivering radiation therapy. VMAT relies on precise combinations of dose rate, gantry speed, and multileaf collimator (MLC) shapes to deliver intensity-modulated patterns. Such complexity warrants the development of correspondingly robust performance verification systems. In this work, we report on a remote, automated software system for daily delivery verification of VMAT treatments. The performance verification software system consists of three main components: (1) a query module for retrieving daily MLC, gantry, and jaw positions reported by the linear accelerator control system to the record and verify system; (2) an analysis module which reads the daily delivery report generated from the database query module, compares the reported treatment positions against the planned positions, and compiles delivery position error reports; and (3) a graphical reporting module which displays reports initiated by a user anywhere within the institutional network or which can be configured to alert authorized users when predefined tolerance values are exceeded. The utility of the system was investigated through analysis of patient data collected at our clinic. Nearly 2500 VMAT fractions have been analyzed with the delivery verification system at our institution. The average percentage of reported MLC leaf positions within 3 mm, gantry positions within 2°, and jaw positions within 3 mm of their planned positions was 92.9% ± 5.5%, 95.9%± 2.9%, and 99.7% ± 0.6%, respectively. The level of agreement between planned and reported MLC positions decreased for treatment plans requiring larger MLC leaf movements between control points. Differences in the reported MLC position error between the delivery verification system and data extracted manually from the control system were noted; however, the differences are likely systematic and, therefore, may be characterized if appropriately accounted for. Further investigation is needed to confirm the utility and accuracy of the system.


Subject(s)
Abdominal Neoplasms/radiotherapy , Breast Neoplasms/radiotherapy , Pelvic Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Quality Assurance, Health Care/standards , Radiotherapy, Intensity-Modulated/standards , Algorithms , Feasibility Studies , Female , Humans , Male , Mastectomy , Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Software , Thoracic Wall/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...