Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 14: 1092373, 2023.
Article in English | MEDLINE | ID: mdl-36816572

ABSTRACT

Background: Tumefactive demyelinating lesions (TDLs) are defined as lesions >2 cm on MRI of the brain. They are identified in a range of demyelinating diseases including massive demyelination due to Marburg's acute MS, Schilder's Disease, Balo's concentric sclerosis, and Tumefactive MS. Apart from the rare demyelinating variants which are often diagnosed histologically, there are no detailed data to phenotype TDLs. Methods: We describe the clinical and radiological features of four similar patients with very large TDLs (>4 cm), that are not consistent with the rare demyelinating variants and may represent a distinct phenotype. Results: All patients presented with hemiplegia and apraxia. The mean age at onset was 37 years with an equal sex distribution. All patients were diagnosed with Tumefactive demyelination based on MRI and CSF analysis, precluding the need for brain biopsy. All responded to potent immunotherapy (including high dose corticosteroids, plasma exchange, rituximab, and/or cyclophosphamide). The mean lag from diagnosis to treatment was 1 day. The median EDSS at presentation was six and recovery to a median EDSS of two occurred over 6 months. Conclusion: We propose that Tumefactive lesions larger than 4 cm are termed "Giant demyelinating lesions" (GDLs) not only on the basis of size, but a rapid and fulminant demyelinating presentation leading to acute, severe neurological disability that is, nonetheless, responsive to immunotherapy. Further clinical studies are required to ratify this proposed phenotype, establish the immunological profile and best treatment for such patients.

2.
Ophthalmology ; 126(6): 801-810, 2019 06.
Article in English | MEDLINE | ID: mdl-30711604

ABSTRACT

PURPOSE: To compare functional and structural changes in the retina in patients with aquaporin-4 immunoglobulin G (AQP4-IgG)-positive neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS). DESIGN: Cross-sectional study; biochemical study of human retinas. PARTICIPANTS: A total of 181 participants, including 22 consecutive patients (44 eyes) with NMOSD, 131 patients (262 eyes) with multiple sclerosis (MS), and 28 normal subjects (56 eyes). In addition, 8 eyeballs from healthy donors were used for biochemical analysis. METHODS: Full-field electroretinography (ERG) and spectral-domain OCT were performed in all the subjects. Topography of AQP4 expression and Müller glial distribution were analyzed using Western blotting and immunohistochemistry. MAIN OUTCOME MEASURES: Full-field ERG parameters, including amplitudes and peak times. Tissue volume of each of the retinal layers at the fovea by OCT segmentation. Levels of AQP4 expression at different retinal regions. RESULTS: The b-wave amplitude was significantly reduced in patients with AQP4-IgG+ NMOSD in scotopic ERGs (compared with AQP4-IgG- subjects, patients with MS, and normal controls) but not in photopic ERGs. Further analysis showed that this b-wave change was mainly caused by reduction of the slow PII component, suggesting specific Müller cell dysfunction. We also found thinning of specific retinal layers at the fovea in patients with AQP4-IgG+ NMOSD, in the Henle fiber outer nuclear layer (HFONL) and the inner segment (IS) layer, but not in the inner nuclear layer (INL), outer plexiform layer (OPL), or outer segment (OS) layer. Furthermore, there was a significant association between foveal HFONL-IS complex thinning and scotopic b-wave amplitude reduction (P = 0.005∼0.01, fixed-effects model). Western blotting demonstrated that Müller cell-specific AQP4 was expressed at a higher level at the fovea than the peripheral retina. Immunohistochemical studies revealed that the specific foveal thinning reflected the topography of AQP4 expression and Müller glial distribution in the human macula. CONCLUSIONS: This study provides in vivo structural and functional evidence of Müller glial dysfunction in eyes of patients with AQP4-IgG+ NMOSD. Topography of retinal structural change is supported by distribution of Müller cells and patterns of AQP4 expression. The study suggests that visual electrophysiology and retinal imaging could be useful biomarkers to assess the potential retinal astrocytopathy in NMOSD.


Subject(s)
Aquaporin 4/immunology , Ependymoglial Cells/pathology , Immunoglobulin G/immunology , Multiple Sclerosis/diagnosis , Neuromyelitis Optica/diagnosis , Retina/physiopathology , Retinal Diseases/diagnosis , Adult , Autoantibodies/blood , Blotting, Western , Cross-Sectional Studies , Electroretinography , Female , Humans , Male , Microscopy, Fluorescence , Middle Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/physiopathology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/physiopathology , Retinal Diseases/immunology , Retinal Diseases/physiopathology , Tomography, Optical Coherence
3.
Ophthalmology ; 126(3): 445-453, 2019 03.
Article in English | MEDLINE | ID: mdl-30060979

ABSTRACT

PURPOSE: To assess differential patterns of axonal loss and demyelination in the optic nerve in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD). DESIGN: Cross-sectional study. PARTICIPANTS: One hundred ninety-two participants, including 136 MS patients (272 eyes), 19 NMOSD patients (38 eyes), and 37 healthy control participants (74 eyes). METHODS: All participants underwent spectral-domain OCT scans and multifocal visual evoked potential (mfVEP) recordings. High-resolution magnetic resonance imaging (MRI) with the diffusion protocol also was performed in all patients. MAIN OUTCOME MEASURES: Ganglion cell-inner plexiform layer (GCIPL) thickness and mfVEP amplitude and latency at 5 eccentricities; global and temporal retinal nerve fiber layer thickness. RESULTS: In optic neuritis (ON) eyes, the NMOSD patients had more severe GCIPL loss (P < 0.001) and mfVEP amplitude reduction (P < 0.001) compared with MS patients, whereas in contrast, mfVEP latency delay was more evident in MS patients (P < 0.001). The NMOSD patients showed more morphologic and functional loss at the foveal to parafoveal region, whereas the MS patients showed evenly distributed damage at the macula. Correlation analysis demonstrated a strong structure-function (OCT-mfVEP) association in the NMOSD patients, which was only moderate in the MS patients. In non-ON (NON) eyes, the MS patients showed significantly thinner GCIPL than controls (P < 0.001), whereas no GCIPL loss was observed in NON eyes in NMOSD. In addition, a significant correlation was found between all OCT and mfVEP measures in MS patients, but not in NMOSD patients. MRI demonstrated significant lesional load in the optic radiation in MS compared to NMOSD eyes (P = 0.002), which was related to the above OCT and mfVEP changes in NON eyes. CONCLUSIONS: Our study demonstrated different patterns of ON damage in NMOSD and MS. In MS, the ON damage was less severe, with demyelination as the main pathologic component, whereas in NMOSD, axonal loss was more severe compared with myelin loss. The disproportional mfVEP amplitude and latency changes suggested predominant axonal damage within the anterior visual pathway as the main clinical feature of NMOSD, in contrast to MS, where demyelination spreads along the entire visual pathway.


Subject(s)
Evoked Potentials, Visual/physiology , Multiple Sclerosis/physiopathology , Neuromyelitis Optica/physiopathology , Optic Nerve/physiopathology , Optic Neuritis/physiopathology , Adult , Axons/pathology , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Neuromyelitis Optica/diagnostic imaging , Optic Neuritis/diagnostic imaging , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods , Visual Acuity , Visual Pathways/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...