Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 16(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38535808

ABSTRACT

Central America is home to one of the most abundant herpetofauna in the Americas, occupying only 7% of the continent's total area. Vipers and lizards are among the most relevant venomous animals in medical practice due to the consequences of envenomation from the bite of these animals. A great diversity of biomolecules with immense therapeutic and biotechnological value is contained in their venom. This paper describes the prominent leading representatives of the family Viperidae, emphasizing their morphology, distribution, habitat, feeding, and venom composition, as well as the biotechnological application of some isolated components from the venom of the animals from these families, focusing on molecules with potential anti-thrombotic action. We present the leading protein families that interfere with blood clotting, platelet activity, or the endothelium pro-thrombotic profile. In conclusion, Central America is an endemic region of venomous animals that can provide many molecules for biotechnological applications.


Subject(s)
Thrombosis , Animals , Central America , Blood Coagulation , Biotechnology , Blood Platelets
2.
Biochim Biophys Acta Proteins Proteom ; 1872(2): 140988, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38142025

ABSTRACT

Snakebite is a significant health concern in tropical and subtropical regions, particularly in Africa, Asia, and Latin America, resulting in more than 2.7 million envenomations and an estimated one hundred thousand fatalities annually. The Bothrops genus is responsible for the majority of snakebite envenomings in Latin America and Caribbean countries. Accidents involving snakes from this genus are characterized by local symptoms that often lead to permanent sequelae and death. However, specific antivenoms exhibit limited effectiveness in inhibiting local tissue damage. Phospholipase A2-like (PLA2-like) toxins emerge as significant contributors to local myotoxicity in accidents involving Bothrops species. As a result, they represent a crucial target for prospective treatments. Some natural and synthetic compounds have shown the ability to reduce or abolish the myotoxic effects of PLA2-like proteins. In this study, we employed a combination approach involving myographic, morphological, biophysical and bioinformatic techniques to investigate the interaction between chlorogenic acid (CGA) and BthTX-I, a PLA2-like toxin. CGA provided a protection of 71.8% on muscle damage in a pre-incubation treatment. Microscale thermophoresis and circular dichroism experiments revealed that CGA interacted with the BthTX-I while preserving its secondary structure. CGA exhibited an affinity to the toxin that ranks among the highest observed for a natural compound. Bioinformatics simulations indicated that CGA inhibitor binds to the toxin's hydrophobic channel in a manner similar to other phenolic compounds previously investigated. These findings suggest that CGA interferes with the allosteric transition of the non-activated toxin, and the stability of the dimeric assembly of its activated state.


Subject(s)
Chlorogenic Acid , Cinnamates , Chlorogenic Acid/pharmacology , Phospholipases A2/chemistry , Phospholipases A2/metabolism , Phospholipases A2/toxicity
3.
Article in English | MEDLINE | ID: mdl-36404954

ABSTRACT

Background: Cathepsin D (CatD) is a lysosomal proteolytic enzyme expressed in almost all tissues and organs. This protease is a multifunctional enzyme responsible for essential biological processes such as cell cycle regulation, differentiation, migration, tissue remodeling, neuronal growth, ovulation, and apoptosis. The overexpression and hypersecretion of CatD have been correlated with cancer aggressiveness and tumor progression, stimulating cancer cell proliferation, fibroblast growth, and angiogenesis. In addition, some studies report its participation in neurodegenerative diseases and inflammatory processes. In this regard, the search for new inhibitors from natural products could be an alternative against the harmful effects of this enzyme. Methods: An investigation was carried out to analyze CatD interaction with snake venom toxins in an attempt to find inhibitory molecules. Interestingly, human CatD shows the ability to bind strongly to snake venom phospholipases A2 (svPLA2), forming a stable muti-enzymatic complex that maintains the catalytic activity of both CatD and PLA2. In addition, this complex remains active even under exposure to the specific inhibitor pepstatin A. Furthermore, the complex formation between CatD and svPLA2 was evidenced by surface plasmon resonance (SPR), two-dimensional electrophoresis, enzymatic assays, and extensive molecular docking and dynamics techniques. Conclusion: The present study suggests the versatility of human CatD and svPLA2, showing that these enzymes can form a fully functional new enzymatic complex.

4.
J. venom. anim. toxins incl. trop. dis ; 28: e20220002, 2022. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1405509

ABSTRACT

Background Cathepsin D (CatD) is a lysosomal proteolytic enzyme expressed in almost all tissues and organs. This protease is a multifunctional enzyme responsible for essential biological processes such as cell cycle regulation, differentiation, migration, tissue remodeling, neuronal growth, ovulation, and apoptosis. The overexpression and hypersecretion of CatD have been correlated with cancer aggressiveness and tumor progression, stimulating cancer cell proliferation, fibroblast growth, and angiogenesis. In addition, some studies report its participation in neurodegenerative diseases and inflammatory processes. In this regard, the search for new inhibitors from natural products could be an alternative against the harmful effects of this enzyme. Methods An investigation was carried out to analyze CatD interaction with snake venom toxins in an attempt to find inhibitory molecules. Interestingly, human CatD shows the ability to bind strongly to snake venom phospholipases A2 (svPLA2), forming a stable muti-enzymatic complex that maintains the catalytic activity of both CatD and PLA2. In addition, this complex remains active even under exposure to the specific inhibitor pepstatin A. Furthermore, the complex formation between CatD and svPLA2 was evidenced by surface plasmon resonance (SPR), two-dimensional electrophoresis, enzymatic assays, and extensive molecular docking and dynamics techniques. Conclusion The present study suggests the versatility of human CatD and svPLA2, showing that these enzymes can form a fully functional new enzymatic complex.


Subject(s)
Cathepsin D/analysis , Elapid Venoms/chemistry , Phospholipases A2/analysis , Multienzyme Complexes/chemistry
5.
Sci Rep, v. 11, 23712, dez. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4029

ABSTRACT

The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.

6.
Sci Rep ; 10(1): 4476, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32161292

ABSTRACT

Snake venom serine proteases (SVSPs) are complex and multifunctional enzymes, acting primarily on hemostasis. In this work, we report the hitherto unknown inhibitory effect of a SVSP, named collinein-1, isolated from the venom of Crotalus durissus collilineatus, on a cancer-relevant voltage-gated potassium channel (hEAG1). Among 12 voltage-gated ion channels tested, collinein-1 selectively inhibited hEAG1 currents, with a mechanism independent of its enzymatic activity. Corroboratively, we demonstrated that collinein-1 reduced the viability of human breast cancer cell line MCF7 (high expression of hEAG1), but does not affect the liver carcinoma and the non-tumorigenic epithelial breast cell lines (HepG2 and MCF10A, respectively), which present low expression of hEAG1. In order to obtain both functional and structural validation of this unexpected discovery, where an unusually large ligand acts as an inhibitor of an ion channel, a recombinant and catalytically inactive mutant of collinein-1 (His43Arg) was produced and found to preserve its capability to inhibit hEAG1. A molecular docking model was proposed in which Arg79 of the SVSP 99-loop interacts directly with the potassium selectivity filter of the hEAG1 channel.


Subject(s)
Hemostasis , Potassium Channel Blockers/pharmacology , Potassium Channels/metabolism , Serine Proteases/toxicity , Snake Venoms/toxicity , Amino Acid Sequence , Antineoplastic Agents/pharmacology , Catalysis , Cell Line , Drug Design , Electrophysiological Phenomena , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/chemistry , Humans , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Potassium Channel Blockers/chemistry , Potassium Channels/chemistry , Recombinant Proteins , Serine Proteases/chemistry , Snake Venoms/chemistry , Structure-Activity Relationship
7.
Acta Crystallogr D Struct Biol ; 76(Pt 3): 221-237, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32133987

ABSTRACT

Fragment-based molecular-replacement methods can solve a macromolecular structure quasi-ab initio. ARCIMBOLDO, using a common secondary-structure or tertiary-structure template or a library of folds, locates these with Phaser and reveals the rest of the structure by density modification and autotracing in SHELXE. The latter stage is challenging when dealing with diffraction data at lower resolution, low solvent content, high ß-sheet composition or situations in which the initial fragments represent a low fraction of the total scattering or where their accuracy is low. SEQUENCE SLIDER aims to overcome these complications by extending the initial polyalanine fragment with side chains in a multisolution framework. Its use is illustrated on test cases and previously unknown structures. The selection and order of fragments to be extended follows the decrease in log-likelihood gain (LLG) calculated with Phaser upon the omission of each single fragment. When the starting substructure is derived from a remote homolog, sequence assignment to fragments is restricted by the original alignment. Otherwise, the secondary-structure prediction is matched to that found in fragments and traces. Sequence hypotheses are trialled in a brute-force approach through side-chain building and refinement. Scoring the refined models through their LLG in Phaser may allow discrimination of the correct sequence or filter the best partial structures for further density modification and autotracing. The default limits for the number of models to pursue are hardware dependent. In its most economic implementation, suitable for a single laptop, the main-chain trace is extended as polyserine rather than trialling models with different sequence assignments, which requires a grid or multicore machine. SEQUENCE SLIDER has been instrumental in solving two novel structures: that of MltC from 2.7 Šresolution data and that of a pneumococcal lipoprotein with 638 residues and 35% solvent content.


Subject(s)
Crystallography, X-Ray/methods , Peptide Fragments/chemistry , Peptides/chemistry , Software , Algorithms , Glycosyltransferases/chemistry , Lipoproteins/chemistry , Protein Folding , Protein Structure, Secondary
8.
Environ Mol Mutagen ; 59(9): 822-828, 2018 12.
Article in English | MEDLINE | ID: mdl-30152043

ABSTRACT

Color Index (C.I.) Disperse Red 1 (DR1) is a widely used textile azo dye found in rivers. As it may not be completely removed by conventional treatments, humans can be exposed through drinking water. Studies have supported in vitro toxicity and mutagenicity of commercial DR1. This study aimed to investigate the mutagenic and toxicogenomic effects of commercial DR1 in multiple tissues/organs of Swiss male mice. For that, animals were orally exposed to the dye (by gavage), at single doses of 0.0005, 0.005, 0.5, 50, or 500 mg/kg bw. The two lowest doses were equivalent to the ones found in two Brazilian rivers receiving influx of textile discharges. Cytotoxicity, micronucleated cell frequencies (for all doses tested), primary DNA damage (comet assay), and gene expression profiling of (0.0005 and 0.005 mg/kg of bw) were investigated 24 hr after animal exposure to commercial DR1. Data showed increased frequencies of micronucleated polychromatic erythrocytes in bone marrow cells after treatment with 0.5 and 50 mg/kg bw. At 0.005 mg/kg bw, commercial DR1 induced an increase of primary DNA damage in liver, but not in kidney cells. Additionally, upregulation of genes involved in the inflammatory process (IL1B) (0.0005 and 0.005 mg/kg bw) and cell-cycle control (CDKN1A) in liver cells, and apoptosis (BCL2 and BAX) in leukocytes (0.005 mg/kg bw) were also detected. In conclusion, the commercial DR1 was genotoxic (chromosome aberrations and primary DNA damage) and modulated gene expression in mice, and such effects were dependent on the doses and tissues analyzed. Environ. Mol. Mutagen. 59:822-828, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Azo Compounds/toxicity , Mutagens/toxicity , Animals , Azo Compounds/chemistry , Bone Marrow Cells/metabolism , Comet Assay , DNA Damage/drug effects , Gene Expression Profiling , Male , Mice , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Mutagens/chemistry
9.
PLoS Negl Trop Dis ; 10(12): e0005181, 2016 12.
Article in English | MEDLINE | ID: mdl-27984589

ABSTRACT

Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi.


Subject(s)
Cell Differentiation , DNA, Protozoan/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Replication Protein A/chemistry , Replication Protein A/metabolism , Trypanosoma cruzi/physiology , Animals , Chagas Disease , Computer Simulation , DNA, Single-Stranded/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Replication Protein A/genetics , Replication Protein A/isolation & purification , Trypanosoma cruzi/genetics
10.
PLoS One ; 11(8): e0161659, 2016.
Article in English | MEDLINE | ID: mdl-27557053

ABSTRACT

Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism.


Subject(s)
Hydrogen-Ion Concentration , Neurospora crassa/genetics , Neurospora crassa/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genetic Complementation Test , Melanins/biosynthesis , Monophenol Monooxygenase , Mutation , Phenotype , Promoter Regions, Genetic , Protein Transport , Proteolysis , alpha Karyopherins/metabolism
11.
BMC Plant Biol ; 15: 198, 2015 08 14.
Article in English | MEDLINE | ID: mdl-26268941

ABSTRACT

BACKGROUND: In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. RESULTS: We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring <3 million years, except one Copia family, RLC_egBianca_1. Protein theoretical models suggest different properties between Copia and Gypsy domains. IRAP and REMAP markers suggested genomic polymorphisms among Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. CONCLUSION: Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.


Subject(s)
Eucalyptus/genetics , Genome, Plant , Plant Proteins/genetics , Retroelements , Transcriptome , Eucalyptus/metabolism , Molecular Sequence Data , Mutagenesis, Insertional , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Structure, Secondary , Sequence Analysis, DNA , Terminal Repeat Sequences
12.
Biomed Res Int ; 2014: 341270, 2014.
Article in English | MEDLINE | ID: mdl-24696848

ABSTRACT

This paper shows the results of quercitrin effects on the structure and biological activity of secretory phospholipase (sPLA2) from Crotalus durissus terrificus, which is the main toxin involved in the pharmacological effects of this snake venom. According to our mass spectrometry and circular dichroism results, quercetin was able to promote a chemical modification of some amino acid residues and modify the secondary structure of C. d. terrificus sPLA2. Moreover, molecular docking studies showed that quercitrin can establish chemical interactions with some of the crucial amino acid residues involved in the enzymatic activity of the sPLA2, indicating that this flavonoid could also physically impair substrate molecule access to the catalytic site of the toxin. Additionally, in vitro and in vivo assays showed that the quercitrin strongly diminished the catalytic activity of the protein, altered its Vmax and Km values, and presented a more potent inhibition of essential pharmacological activities in the C. d. terrificus sPLA2, such as its myotoxicity and edematogenic effect, in comparison to quercetin. Thus, we concluded that the rhamnose group found in quercitrin is most likely essential to the antivenom activities of this flavonoid against C. d. terrificus sPLA2.


Subject(s)
Crotalid Venoms/toxicity , Crotalus/metabolism , Edema/pathology , Muscle Cells/pathology , Phospholipases A2, Secretory/toxicity , Quercetin/analogs & derivatives , Animals , Circular Dichroism , Crotalid Venoms/chemistry , Crotalid Venoms/isolation & purification , Enzyme Assays , Glycosylation/drug effects , Male , Mice , Molecular Docking Simulation , Muscle Cells/drug effects , Phospholipases A2, Secretory/chemistry , Phospholipases A2, Secretory/isolation & purification , Quercetin/chemistry , Quercetin/pharmacology
13.
Toxicon ; 81: 58-66, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24513130

ABSTRACT

In the present work, we describe the isolation and partial structural and biochemical characterization of the first phospholipase A2 inhibitor (γPLI) from Crotalus durissus collilineatus (Cdc) snake serum. Initially, the Cdc serum was subjected to a Q-Sepharose ion exchange column, producing six peaks at 280 nm absorbance (Q1-Q6). Subsequently, Q4 fraction was submitted to affinity chromatography with immobilized PLA2 BnSP-7, a step that resulted in two fractions (NHS-1 and NHS-2). The latter contained the inhibitor, denominated γCdcPLI. The molecular mass of γCdcPLI, determined by Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF), was 22,340 Da. Partial sequences obtained by Edman degradation and by mass spectrometry (MALDI-TOF/TOF), showed similarity, as expected, to other related inhibitors. Circular dichroism (CD) analysis showed the presence of approximately 22% alpha helices and 29% beta sheets in the protein secondary structure. Additionally, CD studies also indicated no significant changes in the secondary structure of γCdcPLI when it is complexed to BpPLA2-TXI. On the other hand, dynamic light scattering (DLS) assays showed a temperature-dependent oligomerization behavior for this inhibitor. Biochemical analyses showed γCdcPLI was able to inhibit the enzymatic, cytotoxic and myotoxic activities of PLA2s. Structural and functional studies performed on this inhibitor may elucidate the action mechanisms of PLA2 inhibitors. In addition, we hope this study may contribute to investigating the potential use of these inhibitors for the treatment of snakebite or inflammatory diseases in which PLA2s may be involved.


Subject(s)
Crotalus/blood , Glycoproteins/chemistry , Phospholipase A2 Inhibitors/chemistry , Reptilian Proteins/chemistry , Amino Acid Sequence , Animals , Bothrops , Crotalid Venoms/chemistry , Glycoproteins/isolation & purification , Mice, Inbred BALB C , Molecular Sequence Data , Phospholipase A2 Inhibitors/isolation & purification , Phospholipases A2/isolation & purification , Reptilian Proteins/isolation & purification , Sequence Alignment , Sequence Analysis, Protein , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Biochimie ; 91(11-12): 1482-92, 2009.
Article in English | MEDLINE | ID: mdl-19733616

ABSTRACT

Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.


Subject(s)
Crotalid Venoms/chemistry , Crotoxin/metabolism , Group II Phospholipases A2/metabolism , Snakes/metabolism , Animals , Crotalus , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...