Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 28(15)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37570879

ABSTRACT

The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound ß-caryophyllene (ß-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-ß-cyclodextrin (HPßCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and ß-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and ß-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL-1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the ß-CAR IC at a concentration of 3000 µg mL-1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and ß-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and ß-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.


Subject(s)
Herbicides , Oils, Volatile , Psidium , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Herbicides/pharmacology , Herbicides/analysis , Oils, Volatile/chemistry , Plant Leaves/chemistry , Psidium/chemistry , Solubility
2.
Biosci. j. (Online) ; 35(5): 1544-1551, sept./oct. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1049050

ABSTRACT

Today, a great interest in Jatropha-based products exists worldwide, mainly for the production of biofuel.However, the oil obtained from this plant is known to be toxic due to contained curcins andphorbol esters. Bioassays, including plant cytogenetic assays based on cell cycle observation, are useful for determining the toxicity of J. curcas oil. Hence, the aim of this study was to describe the mechanism of action of J. curcas oil by cell cycle analysis using Lactuca sativa as plant testing model. A decrease in root growth was observed, closely related to the reduction in mitotic index, along with an increase in condensed nuclei. J. curcas chemicals act both as aneugenic agents, leading to the formation of lagged, sticky chromosomes and c-metaphase cells, as well as clastogenic agents, inducing the formation of chromosome bridges and fragments. The cytotoxicity and genotoxicity of phorbol esters and other chemical components of J. curcas oil was determined and discussed.


Um grande interesse mundial existe em produtos à base de pinhão manso, principalmente para a produção de biocombustíveis. No entanto, o óleo obtido a partir desta planta é conhecidamente tóxico por conter curcina e ésteres de forbol. Bioensaios, incluindo ensaios citogenéticos em plantas-modelo com base na observação do ciclo celular, são úteis para determinar a toxicidade do óleo de J. curcas. Assim, o objetivo deste estudo foi descrever o mecanismo de ação do óleo de J. curcas por análise do ciclo celular usando Lactuca sativa como modelo de teste em plantas. Foi observada uma redução no crescimento das raízes, intimamente relacionada com a redução do índice mitótico e com um aumento de núcleos condensados. Os constituintes químicos de J. curcas atuam simultaneamente como agentes aneugênicos, levando à formação de cromossomos perdidos e pegajosos e células em c-metáfase, bem como agentes clastogênicos, induzindo a formação de pontes e fragmentos cromossômicos. A citotoxicidade e genotoxicidade do éster de forbol e outros componentes químicos do óleo de J. curcas foram determinados e discutidos.


Subject(s)
Cell Cycle , Aneugens , Jatropha , Toxicity , Mitotic Index
3.
J Agric Food Chem ; 63(41): 8981-90, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26416575

ABSTRACT

The essential oil of Plectranthus amboinicus and its chemotypes, carvacrol and thymol, were evaluated on the germination and root and aerial growth of Lactuca sativa and Sorghum bicolor and in acting on the cell cycle of meristematic root cells of L. sativa. The main component found in the oil by analysis in gas chromatography-mass spectrometry and gas chromatography flame ionization detection was carvacrol (88.61% in area). At a concentration of 0.120% (w v(-1)), the oil and its chemotypes retarded or inhibited the germination and decreased root and aerial growth in monocot and dicot species used in the bioassays. In addition, all substances caused changes in the cell cycle of the meristematic cells of L. sativa, with chromosomal alterations occurring from the 0.015% (w v(-1)) concentration. The essential oil of P. amboinicus, carvacrol, and thymol have potential for use as bioherbicides.


Subject(s)
Monoterpenes/toxicity , Oils, Volatile/toxicity , Plant Extracts/toxicity , Plectranthus/chemistry , Thymol/toxicity , Biological Assay , Cymenes , Lactuca/drug effects , Lactuca/genetics , Lactuca/growth & development , Mass Spectrometry , Monoterpenes/chemistry , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Seeds/drug effects , Seeds/growth & development , Sorghum/drug effects , Sorghum/genetics , Sorghum/growth & development , Thymol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...