Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Occup Ther Pediatr ; : 1-19, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419343

ABSTRACT

AIMS: Assess the potential benefits of using PedBotLab, a clinic based robotic ankle platform with integrated video game software, to improve ankle active and passive range of motion, strength, selective motor control, gait efficiency, and balance. METHODS: Ten participants with static neurological injuries and independent ambulation participated in a 10-week pilot study (Pro00013680) to assess feasibility and efficacy of PedBotLab as a therapeutic device twice weekly. Isometric ankle strength, passive and active ankle range of motion, plantarflexor spasticity, selective motor control of the lower extremity, balance, and gait speed were measured pre- and post-trial. RESULTS: Statistically significant improvements were seen in flexibility, active range of motion, and strength in multiple planes of ankle motion. Ankle dorsiflexion with knee flexion and knee extension demonstrated statistically significant results in all outcome measures. No significant changes were observed in gait speed outcomes. CONCLUSIONS: The use of PedbotLab can lead to improvements in ankle strength, flexibility, and active range of motion for children with static neurological injuries. Future studies aim to evaluate the effect on gait quality and work toward developing a home-based device.

2.
Pediatr Phys Ther ; 34(2): 212-219, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35385456

ABSTRACT

PURPOSE: This pilot study assesses the feasibility of using PedBotHome to promote adherence to a home exercise program, the ability of the device to withstand frequent use, and changes in participant ankle mobility.PedBotHome is a robotic ankle device with integrated video game software designed to improve ankle mobility in children with cerebral palsy. METHODS: Eight participants enrolled in a 28-day trial of PedBotHome. Ankle strength, range of motion, and plantar flexor spasticity were measured pre- and posttrial. Performance was monitored remotely, and game settings were modified weekly by physical therapists. RESULTS: Four participants met the study goal of 20 days of use. There were statistically significant improvements in ankle strength, spasticity, and range of motion. CONCLUSIONS: PedBotHome is a feasible device to engage children with static neurological injuries in ankle home exercise. This pilot study expands the paradigm for future innovative home-based robotic rehabilitation.


Subject(s)
Robotic Surgical Procedures , Video Games , Ankle , Ankle Joint , Child , Exercise Therapy , Humans , Muscle Spasticity , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...