Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 126: 105010, 2022 02.
Article in English | MEDLINE | ID: mdl-34896765

ABSTRACT

A ruptured anterior cruciate ligament (ACL) is often reconstructed with a multiple-strand autograft of a semitendinosus tendon alone or combined with a gracilis tendon. Up to 10% of patients experience graft rupture. This potentially results from excessive local tissue strains under physiological loading which could either result in direct mechanical failure of the graft or induce mechanobiological weakening. Since the original location in the hamstring tendon cannot be traced back from an autograft rupture site, this study explored whether clinical outcome could be further improved by avoiding specific locations or regions of human semitendinosus and/or gracilis tendons in ACL grafts due to potential mechanical or biochemical inferiority. Additionally, it examined numerically which clinically relevant graft configurations experience the lowest strains - and therefore the lowest rupture risk - when loaded with equal force. Remnant full-length gracilis tendons from human ACL reconstructions and full-length semitendinosus- and ipsilateral gracilis tendons of human cadaveric specimens were subjected to a stress-relaxation test. Locations at high risk of mechanical failure were identified using particle tracking to calculate local axial strains. As biochemical properties, the water-, collagen-, glycosaminoglycan- and DNA content per tissue region (representing graft strands) were determined. A viscoelastic lumped parameter model per tendon region was calculated. These models were applied in clinically relevant virtual graft configurations, which were exposed to physiological loading. Configurations that provided lower stiffness - i.e., experiencing higher strains under equal force - were assumed to be at higher risk of failure. Suitability of the gracilis tendon proper to replace semitendinosus muscle-tendon junction strands was examined. Deviations in local axial strains from the globally applied strain were of similar magnitude as the applied strain. Locations of maximum strains were uniformly distributed over tendon lengths. Biochemical compositions varied between tissue regions, but no trends were detected. Viscoelastic parameters were not significantly different between regions within a tendon, although semitendinosus tendons were stiffer than gracilis tendons. Virtual grafts with a full-length semitendinosus tendon alone or combined with a gracilis tendon displayed the lowest strains, whereas strains increased when gracilis tendon strands were tested for their suitability to replace semitendinosus muscle-tendon junction strands. Locations experiencing high local axial strains - which could increase risk of rupture - were present, but no specific region within any of the investigated graft configurations was found to be mechanically or biochemically deviant. Consequently, no specific tendon region could be indicated to provide a higher risk of rupture for mechanical or biochemical reasons. The semitendinosus tendon provided superior stiffness to a graft compared to the gracilis tendon. Therefore, based on our results it would be recommended to use the semitendinosus tendon, and use the gracilis tendon in cases where further reinforcement of the graft is needed to attain the desired length and cross-sectional area. All these data support current clinical standards.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Hamstring Muscles , Hamstring Tendons , Autografts , Hamstring Muscles/surgery , Humans , Tendons
2.
Sci Rep ; 8(1): 8518, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29867153

ABSTRACT

Adherent cells are generally able to reorient in response to cyclic strain. In three-dimensional tissues, however, extracellular collagen can affect this cellular response. In this study, a computational model able to predict the combined effects of mechanical stimuli and collagen on cellular (re)orientation was developed. In particular, a recently proposed computational model (which only accounts for mechanical stimuli) was extended by considering two hypotheses on how collagen influences cellular (re)orientation: collagen contributes to cell alignment by providing topographical cues (contact guidance); or collagen causes a spatial obstruction for cellular reorientation (steric hindrance). In addition, we developed an evolution law to predict cell-induced collagen realignment. The hypotheses were tested by simulating bi- or uniaxially constrained cell-populated collagen gels with different collagen densities, subjected to immediate or delayed uniaxial cyclic strain with varying strain amplitudes. The simulation outcomes are in agreement with previous experimental reports. Taken together, our computational approach is a promising tool to understand and predict the remodeling of collagenous tissues, such as native or tissue-engineered arteries and heart valves.


Subject(s)
Collagen/metabolism , Computer Simulation , Models, Biological , Animals , Humans
3.
J Biomech ; 48(5): 823-31, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25560271

ABSTRACT

Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling.


Subject(s)
Collagen/physiology , Models, Theoretical , Adaptation, Physiological , Finite Element Analysis , Gels , Tissue Engineering
4.
Integr Biol (Camb) ; 6(4): 422-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24549279

ABSTRACT

In the cardiac microenvironment, cardiomyocytes (CMs) are embedded in an aligned and structured extracellular matrix (ECM) to maintain the coordinated contractile function of the heart. The cardiac fibroblast (cFB) is the main cell type responsible for producing and remodeling this matrix. In cardiac diseases, however, adverse remodeling and CM death may lead to deterioration of the aligned myocardial structure. Here, we present an in vitro cardiac model system with uniaxial and biaxial constraints to induce (an)isotropy in 3D microtissues, thereby mimicking 'healthy' aligned and 'diseased' disorganized cardiac matrices. A mixture of neonatal mouse CMs and cFBs was resuspended in a collagen-matrigel hydrogel and seeded to form microtissues to recapitulate the in vivo cellular composition. Matrix disarray led to a stellate cell shape and a disorganized sarcomere organization, while CMs in aligned matrices were more elongated and had aligned sarcomeres. Although matrix disarray has no detrimental effect on the force generated by the CMs, it did have a negative effect on the homogeneity of contraction force distribution. Furthermore, proliferation of the cFBs affected microtissue contraction as indicated by the negative correlation between the percentage of cFBs in the microtissues and their beating frequency. These results suggest that in regeneration of the diseased heart, reorganization of the disorganized matrix will contribute to recover the coordinated contraction but restoring the ratio in cellular composition (CMs and cFBs) is also a prerequisite to completely regain tissue function.


Subject(s)
Extracellular Matrix/physiology , Myocardial Contraction/physiology , Myocardium/cytology , Myocytes, Cardiac/physiology , Tissue Engineering/methods , Animals , Animals, Newborn , Anisotropy , Extracellular Matrix/ultrastructure , Finite Element Analysis , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Fluorescence , Myocardium/ultrastructure , Myocytes, Cardiac/cytology
5.
Osteoarthritis Cartilage ; 18(11): 1528-35, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20833251

ABSTRACT

OBJECTIVE: In this study, we aim at tuning the differentiation of periosteum in an organ culture model towards cartilage, rich in collagen type II, using combinations of biochemical and mechanical stimuli. We hypothesize that addition of TGF-ß will stimulate chondrogenesis, whereas sliding indentation will enhance collagen synthesis. DESIGN: Periosteum was dissected from the tibiotarsus of 15-day-old chick embryos. Explants were embedded in between two agarose layers, and cultured without stimulation (control), with biochemical stimulation (10 ng/ml TGF-ß1), with mechanical stimulation (sliding indentation), or both biochemical and mechanical stimulations. Sliding indentation was introduced as a method to induce tensile tissue strain. Analysis included quantification of DNA, collagen and GAG content, conventional histology, and immunohistochemistry for collagen type I and II at 1 or 2 weeks of culture. RESULTS: Embedding the periosteal explants in between agarose layers induced cartilage formation, confirmed by synthesis of sGAG and collagen type II. Addition of TGF-ß1 to the culture medium did not further enhance this chondrogenic response. Applying sliding indentation only to the periosteum in between agarose layers enhanced the production of collagen type I, leading to the formation of fibrous tissue without any evidence of cartilage formation. However, when stimulated by both TGF-ß1 and sliding indentation, collagen production was still enhanced, but now collagen type II, while sGAG was found to be similar to TGF-ß1 or unloaded samples. CONCLUSIONS: The type of tissue produced by periosteal explants can be tuned by combining mechanical stimulation and soluble factors. TGF-ß1 stimulated a chondrocyte phenotype and sliding indentation stimulated collagen synthesis. Such a combination may be valuable for improvement of the quality of tissue-engineered cartilage.


Subject(s)
Cartilage/drug effects , Cartilage/physiopathology , Cell Differentiation/drug effects , Chondrogenesis/physiology , Periosteum/cytology , Stress, Mechanical , Animals , Cartilage/metabolism , Chick Embryo , Chondrocytes/drug effects , Chondrogenesis/drug effects , Collagen Type II , DNA/analysis , Glycosaminoglycans/analysis , Immunohistochemistry , Pilot Projects , Tissue Engineering/methods , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...