Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Eng Des Sel ; 23(5): 347-55, 2010 May.
Article in English | MEDLINE | ID: mdl-20100702

ABSTRACT

The genome of the hyperthermophilic archaeon Thermococcus kodakaraensis contains three genes encoding subtilisin-like serine proteases, Tk-1689, Tk-0076 and Tk-subtilisin. Of them, the structure and function of Tk-subtilisin have been extensively studied. To examine whether Tk-1689 is matured to an active form and functions as a hyperthermostable protease as is Tk-subtilisin, the gene encoding the Tk-1689 derivative without a putative N-terminal signal sequence, termed Pro-Tk-SP, was overexpressed in Escherichia coli. Pro-Tk-SP is composed of 640 amino acid residues and its molecular mass is 68.6 kDa. The recombinant protein was purified, however, as an active 44 kDa protease, termed Tk-SP, which lacks the N-terminal 113 and C-terminal 101 amino acid residues. This result suggests that Pro-Tk-SP consists of an N-terminal propeptide (Ala1-Ala113), a mature domain (Tk-SP, Val114-Val539) and a C-terminal propeptide (Asp540-Gly640). Like Tk-subtilisin, Tk-SP showed a broad substrate specificity and was highly thermostable. Its optimum temperature for activity was approximately 100 degrees C and its half-life at 100 degrees C was 100 min. It was fully resistant to treatment with 5% SDS, 8 M urea or 10% Triton X-100. However, unlike Tk-subtilisin and bacterial subtilisins, Tk-SP requires neither Ca2+ nor propeptide for folding. As a result, Tk-SP was fully active even in the presence of 10 mM EDTA. Thus, Tk-SP has a great advantage over other proteases in high resistance to heat, denaturants, detergents and chelating agents and therefore has great potential for application in biotechnology fields.


Subject(s)
Protein Engineering/methods , Recombinant Proteins/genetics , Serine Proteases/genetics , Subtilisins/genetics , Temperature , Thermococcus/enzymology , Amino Acid Sequence , DNA Primers/genetics , Escherichia coli , Gene Expression , Half-Life , Molecular Sequence Data , Recombinant Proteins/metabolism , Serine Proteases/metabolism , Substrate Specificity
2.
Pak J Biol Sci ; 12(19): 1314-9, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-20387746

ABSTRACT

The aim of this study was to evaluate nutritional composition of China chestnut seeds, Sterculia monosperma Vent. and analyze the physico-chemical properties of flour from the seeds. The results obtained on proximate analysis of China chestnut seeds, S. monosperma, revealed that they contained mostly carbohydrate (73.7% dm), followed by fat (12.0% dm), protein (7.8% dm), fiber (5.5% dm) and ash (1.0% dm). They have a relatively high content of potassium (12.3 mg g(-1) dm) following by phosphorus (2.30 mg g(-1) dm), magnesium (1.87 mg g(-1) dm), sulfur (0.88 mg g(-1) dm) and calcium (0.14 mg g(-1) dm). The fatty acids profile was found to be composed of mainly palmitic (42%) and oleic acids (34%), with general long-chain fatty acids the other significant component by mass (13%). Glutamic acid (17.4%), aspartic acid (12.5%) and arginine (12.5%) were the three major amino acid constituents. The purified seed starch was investigated for its morphological, starch content and physico-chemical properties, such as amylose content, swelling power, solubility and pasting properties. The starch granules were quite round, about 10-15 micron diameter and composed of more than 35% (w/w) of amylose. The pasting properties of flour from the seeds of S. monosperma revealed that gelatinization began at 72.6-73.2 degrees C and the maximum viscosity in the holding period at 95 degrees C was 633 BU. Interestingly and potentially of use, was that the viscosity at the cooling period was more than two-fold higher than that in the holding period.


Subject(s)
Flour , Plant Extracts/chemistry , Sterculia/metabolism , Amino Acids/chemistry , Amylose/chemistry , China , Fatty Acids/chemistry , Microscopy, Electron, Scanning/methods , Nutritive Value , Plants/metabolism , Seeds/metabolism , Solubility , Starch/chemistry , Temperature , Vitamins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...