Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(12): 127701, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34597063

ABSTRACT

Semiconductor quantum dots containing more than one electron have found wide application in qubits, where they enable readout and enhance polarizability. However, coherent control in such dots has typically been restricted to only the lowest two levels, and such control in the strongly interacting regime has not been realized. Here we report quantum control of eight different transitions in a silicon-based quantum dot. We use qubit readout to perform spectroscopy, revealing a dense set of energy levels with characteristic spacing far smaller than the single-particle energy. By comparing with full configuration interaction calculations, we argue that the dense set of levels arises from Wigner-molecule physics.

2.
Nanotechnology ; 31(50): 505001, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33043895

ABSTRACT

We present an improved fabrication process for overlapping aluminum gate quantum dot devices on Si/SiGe heterostructures that incorporates low-temperature inter-gate oxidation, thermal annealing of gate oxide, on-chip electrostatic discharge (ESD) protection and an optimized interconnect process for thermal budget considerations. This process reduces gate-to-gate leakage, damage from ESD, dewetting of aluminum and formation of undesired alloys in device interconnects. Additionally, cross-sectional scanning transmission electron microscopy (STEM) images elucidate gate electrode morphology in the active region as device geometry is varied. We show that overlapping aluminum gate layers homogeneously conform to the topology beneath them, independent of gate geometry and identify critical dimensions in the gate geometry where pattern transfer becomes non-ideal, causing device failure.

3.
Nanotechnology ; 27(15): 154002, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26938505

ABSTRACT

We report the fabrication and characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. In the past, all gate-defined quantum dots in Si/SiGe heterostructures were formed on top of strain-graded virtual substrates. The strain grading process necessarily introduces misfit dislocations into a heterostructure, and these defects introduce lateral strain inhomogeneities, mosaic tilt, and threading dislocations. The use of a SiGe nanomembrane as the virtual substrate enables the strain relaxation to be entirely elastic, eliminating the need for misfit dislocations. However, in this approach the formation of the heterostructure is more complicated, involving two separate epitaxial growth procedures separated by a wet-transfer process that results in a buried non-epitaxial interface 625 nm from the quantum dot. We demonstrate that in spite of this buried interface in close proximity to the device, a double quantum dot can be formed that is controllable enough to enable tuning of the inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of an applied magnetic field.

4.
ACS Nano ; 9(5): 4891-9, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25932940

ABSTRACT

To assess possible improvements in the electronic performance of two-dimensional electron gases (2DEGs) in silicon, SiGe/Si/SiGe heterostructures are grown on fully elastically relaxed single-crystal SiGe nanomembranes produced through a strain engineering approach. This procedure eliminates the formation of dislocations in the heterostructure. Top-gated Hall bar devices are fabricated to enable magnetoresistivity and Hall effect measurements. Both Shubnikov-de Haas oscillations and the quantum Hall effect are observed at low temperatures, demonstrating the formation of high-quality 2DEGs. Values of charge carrier mobility as a function of carrier density extracted from these measurements are at least as high or higher than those obtained from companion measurements made on heterostructures grown on conventional strain graded substrates. In all samples, impurity scattering appears to limit the mobility.

SELECTION OF CITATIONS
SEARCH DETAIL
...