Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Trauma Resusc Emerg Med ; 26(1): 36, 2018 Apr 28.
Article in English | MEDLINE | ID: mdl-29704898

ABSTRACT

In this prospective, observational study we describe the incidence and characteristics of out of hospital cardiac arrest (OHCA) cases who received mechanical CPR, after the implementation of a mechanical CPR device (LUCAS 2; Physio Control, Redmond, WA, USA) in a physician staffed helicopter emergency medical service (HEMS) in South Tyrol, Italy. During the study period (06/2013-04/2016), 525 OHCA cases were registered by the dispatch centre, 271 (51.6%) were assisted by HEMS. LUCAS 2 was applied in 18 (6.6%) of all HEMS-assisted OHCA patients; ten were treated with LUCAS 2 at the scene only, and eight were transported to hospital with ongoing CPR. Two (11.1%) of the 18 patients survived long term with full neurologic recovery. In seven of eight patients transferred to hospital with ongoing CPR, CPR was ceased in the emergency room without further intervention. Retrospectively, all HEMS-assisted OHCA cases were screened for proposed indication criteria for prolonged CPR. Thirteen patients fulfilled these criteria, but only two of them were transported to hospital. Based on these results, we propose a standard operating procedure for HEMS-assisted patients with refractory OHCA in a region without hospitals with ECLS capacity.


Subject(s)
Aircraft , Cardiopulmonary Resuscitation/instrumentation , Emergency Medical Services , Out-of-Hospital Cardiac Arrest/therapy , Physicians/supply & distribution , Adolescent , Adult , Aged , Female , Humans , Incidence , Italy/epidemiology , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/epidemiology , Prospective Studies , Retrospective Studies , Workforce , Young Adult
2.
J Emerg Med ; 50(4): 594-600.e1, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26607696

ABSTRACT

BACKGROUND: Chest compression quality is decisive for overall outcome after cardiac arrest. Chest compression depth may decrease when cardiopulmonary resuscitation (CPR) is performed on a mattress, and the use of a backboard does not necessarily improve compression depth. Mechanical chest compression devices may overcome this problem. OBJECTIVES: We sought to investigate the effectiveness of manual chest compressions both with and without a backboard compared to mechanical CPR performed on surfaces of different softness. METHODS: Twenty-four advanced life support (ALS)-certified rescuers were enrolled. LUCAS2 (Physio-Control, Redmond, WA) delivers 52 ± 2 mm deep chest compressions and active decompressions back to the neutral position (frequency 102 min(-1); duty cycle, 50%). This simulated CPR scenario was performed on a Resusci-Anne manikin (Laerdal, Stavanger, Norway) that was lying on 3 different surfaces: 1) a concrete floor, 2) a firm standard mattress, and 3) a pressure-relieving mattress. Data were recorded by the Laerdal Skill Reporting System. RESULTS: Manual chest compression with or without a backboard were performed correctly less often than mechanical chest compressions (floor: 33% [interquartile range {IQR}, 27-48%] vs. 90% [IQR, 86-94%], p < 0.001; standard mattress: 32% [IQR, 20-45%] vs. 27% [IQR, 14-46%] vs. 91% [IQR, 51-94%], p < 0.001; and pressure-relieving mattress 29% [IQR, 17-49%] vs. 30% [IQR, 17-52%] vs. 91% [IQR, 87-95%], p < 0.001). The mean compression depth on both mattresses was deeper with mechanical chest compressions (floor: 53 mm [range, 47-57 mm] vs. 56 mm [range, 54-57 mm], p = 0.003; standard mattress: 50 mm [range, 44-55 mm] vs. 51 mm [range, 47-55 mm] vs. 55 mm [range, 54-58 mm], p < 0.001; and pressure-relieving mattress: 49 mm [range, 44-55 mm] vs. 50 mm [range, 44-53 mm] vs. 55 mm [range, 55-56 mm], p < 0.001). In this ∼6-min scenario, the mean hands-off time was ∼15 to 20 s shorter in the manual CPR scenarios. CONCLUSIONS: In this experimental study, only ∼30% of manual chest compressions were performed correctly compared to ∼90% of mechanical chest compressions, regardless of the underlying surface. Backboard use did not influence the mean compression depth during manual CPR. Chest compressions were deeper with mechanical CPR. The mean hands-off time was shorter with manual CPR.


Subject(s)
Heart Massage/methods , Manikins , Beds , Cross-Over Studies , Equipment Design , Heart Massage/instrumentation , Pressure
3.
Wilderness Environ Med ; 26(1): 68-71, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25443759

ABSTRACT

OBJECTIVE: To describe the prehospital management and safety of search and rescue (SAR) teams involved in a large-scale rockfall disaster and monitor the acute and chronic health effects on personnel with severe dolomitic dust exposure. METHODS: SAR personnel underwent on-site medical screening and lung function testing 3 months and 3 years after the event. RESULTS: The emergency dispatch center was responsible for central coordination of resources. One hundred fifty SAR members from multidisciplinary air- and ground-based teams as well as geotechnical experts were dispatched to a provisionary operation center. Acute exposure to dolomite dust with detectable silicon and magnesium concentrations was not associated with (sub)acute or chronic sequelae or a clinically significant impairment in lung function in exposed personnel. CONCLUSIONS: The risk for personnel involved in mountain SAR operations is rarely reported and not easily investigated or quantified. This case exemplifies the importance of a multiskilled team and additional considerations for prehospital management during natural hazard events. Safety plans should include compulsory protective measures and medical monitoring of personnel.


Subject(s)
Calcium Carbonate/toxicity , Disasters , Dust/analysis , Health Personnel , Landslides , Magnesium/toxicity , Environmental Medicine/organization & administration , Environmental Medicine/statistics & numerical data , Italy , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...